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Abstract – The implementation of residue number system reverse converters based on well-known 

regular and modular parallel prefix adders is analyzed. The VLSI implementation results show a 

significant delay reduction and area × time2 improvements, all this at the cost of higher power 

consumption, which is the main reason preventing the use of parallel-prefix adders to achieve 

high-speed reverse converters in nowadays systems. Hence, to solve the high power consumption 

problem, novel specific hybrid parallel-prefix-based adder components those provide better 

tradeoff between delay and power consumption. The power, area and delay of the proposed system 

are analysis using Xilinx 14.2. 
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I. Introduction 

Power dissipation has become one of the major 

limiting factors in the design of digital ASICs. Low 

power dissipation will increase the mobility of the ASIC 

by reducing the system cost, size and weight. DSP blocks 

are a major source of power dissipation in modern 

ASICs. The residue number system (RNS) has, for a long 

time, been proposed as an alternative to the regular two’s 

complement number system (TCS) in DSP applications 

to reduce the power dissipation. Some research have 

shown that implementing FIR filters in residue number 

system (RNS) instead of two’s complement number 

system (TCS) can give a reduction in power dissipation. 

FIR filters are among the less complex DSP blocks. A 

general sketch of how RNS computations can be 

performed is shown in figure 1. 

 

 
 

Fig. 1: The basic principle of RNS 

 

The Residue Number System plays a significant role  

 

 

 

in the battery based and portable devices because of its 

low power features and its competitive delay. The 

Residue number system reverse converter is designed  

with  parallel prefix addition by using new components 

methodology for higher speed operation[1].The RNS 

consists of two main components forward and the reverse 

converter that are integrated with the existing digital 

system. The forward converter performs the operation of 

converting the binary number to the modulo number 

whereas the reverse converter performs the operation of 

reverse converting the modulo number to the binary 

number which is the hard and time consuming process 

compared with the forward converter. The fundamental 

RNS concepts such as 1)RNS definition with properties 

and their applications,2)consideration of modulo set 

selection,3)design of forward converter,4)modulo 

arithmetic units,4)design of reverse converter are 

discussed[2]. The voltage over scaling (VOS) technique 

is applied to the residue number system to achieve high 

energy efficiency. The VOS technique introduces soft 

errors which degrades the performance of the system. To 

overcome these soft errors a new technique is 

implemented called joint RNS-RPR (JRR) which is the 

combination of RNS and the reduced precision 

redundancy. This method provides the advantage of 

satisfying the basic properties of RNS includes shorter 

critical path, reduced complexity and low power [3].New 

Architectures are presented for the module sets (2n-1, 2n, 
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2n+1) for the conversion from the residue to the binary 

equivalents [4]. Here the speed and the cost are major 

concern. Distributed arithmetic principles are used to 

perform the inner product computation in [5].The input 

data which are in the residue domain which are encoded 

using the Thermometer code format and the outputs are 

encoded using the One hot code format. Compared to the 

conventional method which used Binary code format, the 

proposed system which achieves higher operating speed. 

The residue number system which provides carries free 

addition and fully arithmetic operation [6], for several 

applications such as digital signal processing and 

cryptography [7]-[11]. In paper present a comprehensive 

method which uses the parallel prefix adder in selected 

position, thereby using the shift operation on one bit left 

to design a multiplier on the same design module to 

achieve a fast reverse converter design. The usage on 

parallel prefix structure in the design leads to higher 

speed in operation meanwhile it increases the area and 

power consumption. In order to compensate the tradeoff 

between the speed, area and power consumption, a novel 

specific hybrid parallel prefix based adder components 

are used to design the reverse converter. This hybrid 

design which provides the significant reduction in the 

power delay product (PDP) metric and leads to 

considerable improvements in the area time² product 

(AT²) in comparison with the traditional converters 

without using parallel prefix adders. 

II. Theory 

II.1. Field-Programmable Gate Array 

A field-programmable gate array (FPGA) is a 

semiconductor device that can be configured by the 

customer or designer after manufacturing—hence the 

name "field-programmable". To program an FPGA one 

must specify how they want the chip to work with a logic 

circuit diagram or a source code in a hardware 

description language (HDL). FPGAs can be used to 

implement any logical function that an application-

specific integrated circuit (ASIC) could perform, but the 

ability to update the functionality after shipping offers 

advantages for many applications. 

FPGAs contain programmable logic components 

called "logic blocks", and a hierarchy of reconfigurable 

interconnects that allow the blocks to be "wired 

together"—somewhat like a one-chip programmable 

breadboard. Logic blocks can be configured to perform 

complex combinational functions, or merely simple logic 

gates like AND and XOR. In most FPGAs, the logic 

blocks also include memory elements, which may be 

simple flip-flops or more complete blocks of memory. 

For any given semiconductor method, FPGAs are 

sometimes slower than their fixed ASIC counterparts. 

They additionally draw a lot of power, and usually 

achieve less functionality using a given quantity of 

circuit complexity. However their benefits include a 

shorter time to market, ability to re-program within the 

field to fix bugs, and lower non-recurring engineering 

prices. Vendors may take a middle road by developing 

their hardware on ordinary FPGAs, however manufacture 

their final version thus it will no longer be changed once 

the design has been committed. 

Field Programmable Gate Array (FPGA) devices were 

introduced by Xilinx within the mid-1980s. They differ 

from CPLDs in design, storage technology, variety of 

inbuilt options, and cost, and are aimed toward the 

implementation of high performance, large-size circuits. 

 

 
 

Fig.2 FPGA Architecture 

 

The basic design of an FPGA is illustrated in figure 2. 

It consists of a matrix of CLBs (Configurable Logic 

Blocks), interconnected by an array of switch matrices. 

The internal design of a CLB is totally different from 

that of a PLD 1st, rather than implementing SOP 

expressions with AND gates followed by OR gates (like 

in SPLDs), its operation is generally based on a LUT 

(lookup table). Moreover, during an FPGA the number of 

flip-flops is far additional abundant than in a CPLD, 

therefore allowing the construction of additional refined 

sequential circuits. Besides JTAG support and interface 

to numerous logic levels, different further options are 

included in FPGA chips, like SRAM memory, clock 

multiplication (PLL or DLL), PCI interface, etc. Some 

chips additionally include dedicated blocks, like 

multipliers, DSPs, and microprocessors. 

Another basic difference between an FPGA and a 

CPLD refers to the storage of the interconnects. Whereas 

CPLDs are non-volatile (that is, they make use of 

antifuse, EEPROM, Flash, etc.), most FPGAs use 

SRAM, and are thus volatile. This approach saves area 

and lowers the value of the chip because FPGAs present 

a very large number of programmable interconnections, 

however needs an external ROM. There are, however, 

non-volatile FPGAs (with antifuse), which could be 

advantageous once reprogramming isn't necessary. 

FPGAs are very sophisticated. Chips manufactured 

with state-of-the-art0.09mmCMOS technology, with 9 
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copper layers and over 1,000 I/O pins, are currently 

offered. 

III. Method 

The main reason for the high power consumption and 

space overhead of those adders is that the recursive 

impact of generating and propagating signals at every 

prefix level. However, this technique suffers from high 

fan-out, which can build it usable just for small width 

operands. However, we tend to may address this 

drawback by eliminating the additional prefix level and 

using a changed excess-one unit instead. In contrast to 

the BEC, this modified unit is ready to perform a 

conditional increment supported control signals as shown 

in Fig. 3, and also the resulted hybrid modular parallel-

prefix excess-one (HMPE) adder is pictured in Fig.4. The 

HMPE consists of 2 parts:  

 

1) A regular prefix adder 

2) A modified excess-one unit.  

 

First, 2 operands are added  using the prefix adder, 

and therefore the result's conditionally incremented 

afterward based on control signals generated by the 

prefix section therefore on assure the single zero 

illustration. 

 

 
 

Fig.3 Modified excess-one unit 

 

 
 

Fig.4 HMPE structure 

 

In this style, the adder style is implemented by using 

the berkelium adder parallel prefix structure. Here the 

primary 2 operands are added by using the prefix adder 

preprocessing stage thereby generating the propagate and 

generate equation. the primary stage processed signal get 

passed to subsequent stage known as the prefix carry 

tree, this stage once more computes, generate and 

propagate equation by using the previous output and 

every one the logic cells used within the berkelium adder 

network. These processed signals are passed to the post 

processing block. 

 

 
 

Fig.5 Parallel prefix adder based multiplier design 
 

The generated carry bits in initial 2 stages of the 

parallel prefix network get passed to the last stage. Again 

the generated and prorogated signal within the second 

stage get passed to the last stage referred to as the post 

process stage, this stage computes the total and also the 

carryout signal by using the processed generate and 

propagate equation to style the adder for (4n+1) modulo 

addition for n=5.In that style the prorogated signal or the 

generated signal get left shifted to 1-bit position and so 

the sum get obtained for planning the multiplier factor. 

IV. Result 

Proposed system simulation results are as follows: 

 
 

Fig.6: simulation output 
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Fig.7 Scalable Encryption algorithm Top Module 
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Fig.8 Scalable Encryption Algorithm Multiplexer 
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Fig.9 Scalable encryption algorithm Decryption 
 

 
 

Fig.10 Analysis and Synthesis 

V. Conclusion 

This paper presents parallel-prefix-based adder 

elements that provide higher tradeoff in area and delay 

are therefore exhibited to design reverse converters. a 

technique is represented to style reverse converters 

depending on numerous styles of prefix adders. This 

brief presents a technique which will be applied to most 

of the present reverse converter architectures to enhance 

their Performance and adjust the cost/performance to the 

application specifications. he use of modular and regular 

parallel-prefix adders projected during this brief in 

reverse converters highly decrease the delay at the 

expense of significantly additional power AND circuit 
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area, whereas the projected prefix-based adder elements 

permits one to achieve appropriate tradeoffs between 

speed and price by selecting the right adders for the 

elements of the circuits which will benefit from them the 

most. 
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