A Fixed Point Theorem for Multivalued Mapping in Uniform Space

Bijendra Singh¹, G.P.S Rathore², Priyanka Dubey³, Naval Singh⁴

¹Professor & Dean, School of Studies in Mathematics, Vikram University, Ujjain;
 ^{2.}Sr.Scientist, K.N.K Horticulture College, Mandsaur(M.P);
 ³Research Scholar, School of Studies in Mathematics, Vikram University, Ujjain'(M.P);
 ⁴ Govt.Science and Commerce College, Benazeer, Bhopal, (M.P);

Abstract – The aim of this paper to prove a fixed point theorem for multivalued mapping in orbitally complete Hausdorff uniform space and hyperspace. These results generalize several corresponding relations in uniform space.

Keywords: Fixed point, uniform space, multivalued mapping, orbitally complete,

I. Introduction

The well known Banach fixed point theorem for contraction mapping has been generalized and extended in many direction. Acharya[1], Mishra and Singh[2], Turkoglu and Fisher[3],have given many interesting results of fixed point theory in uniform space. Our results generalize the corresponding result of Badshah and Sharma[4].Since the uniform space form a natural extension of the matric space.there exists considerable literature of fixed point theory dealing with results on fixed point or common fixed points in uniform spaces(see for ex.[5]-[9]).

II. Definition

II.1.Definition 1.1[4]

A uniformity for a set X is a non-void family U of substs of $X \times X$ such that:

- (1.1.1) each member of U contains the diagonal Δ ,
- (1.1.2) if $u \in U$ then $u^{-1} \in U$,
- (1.1.3) if $u \in U$ then $v \circ v \subseteq U$, for some $v \in U$

(1.1.4) if u and v are members of U, then $u \cap v \in U$ and

(1.1.5) if
$$u \in U$$
 and $u \subseteq v \subseteq X \times X$, then $v \in U$.

The pair (X, U) is called a uniform space.

II.2. Definition.1.2 [3]

Let (X, U) be a uniform space. family $\{d_i : i \in I\}$ of pseudometric on X with indexingset I, is called an associated family for the uniformity U if the family

$$\beta = \{ V(i,\varepsilon) : i \in I; \varepsilon > 0 \},\$$

Where,

$$V(i,\varepsilon) = \{(x, y) : x, y \in X, d_i(x, y) < \varepsilon\}$$

is the sub-base for the uniformity U. We may assume that β itself is a base by adjoining finite intersection of members of β , if necessary. The corresponding family of pseudometric is called an associated family for U. An associated family for U will be denoted by p^* .

Let A be a nonempty subset of a uniform space X.Define

$$\Delta^*(A) = \sup\{d_i(x, y) \colon x, y \in A, i \in I\},\$$

Where

$$\{d_i: i \in I\} = p^*,$$

Then Δ^* is called an augmented diameter of A. Further, A is said to be p^* -bounded if $\Delta^*(A) < \infty$.

IV.4.Definition.1.4 [3]

Let $2^X = \{A: A \text{ is a nonempty, Closed and } p^*\text{-bounded}$ subset of $X\}$. For any nonempty subsets A and B of X, define

$$d_{i}(X, A) = \inf \{d_{i}(x, a) : a \in A\}, i \in I$$

$$H_{i}(A, B) = \max \{ \sup_{a \in A} d_{i}(a, B), \sup_{b \in B} d_{i}(A, b) \}$$

$$= \sup_{x \in X} \{d_{i}(x, A) - d_{i}(x, B) \}.$$

It is well known that on 2^x , H_i is a pseudometric, called the Hausdorff pseudometric induced by d_i , $i \in I$.

Let (X,U) be a uniform space with an augmented associated family $p^* \cdot p^*$ also induces a uniformity U^* on 2^X defined by the base

$$\boldsymbol{\beta}^* = \big\{ V^*(i,\varepsilon) : i \in I, \varepsilon > 0 \big\},\$$

Where

 $V^*(i,\varepsilon) = \{(A,B): A, B \in 2^X, H_i(A,B) < \varepsilon\}.$ The space $(2^X, U^*)$ is a uniform space called the hyperspace of (X, U).

VI.6.Definition.1.6 [3]

The collection of all filters on a given set X is denoted by $\phi(X)$. An order relation is define on $\phi(X)$ by the rule $F_1 < F_2$ if $F_1 \supset F_2$. If $F^* < F$, then F^* is called a sub-filter of F.

Let (X,U) be a uniform space defined by $\{d_i : i \in I\} = p^*$. If $F : X \to 2^X$ is a multivalued mapping, then

(i) $x \in X$ is called a fixed point of F if $x \in Fx$.

(ii) An orbit of F at a point $x_0 \in X$ is a sequence $\{x_n\}$ given by

$$O(F, x_0) = \{x_n : x_n \in Fx_{n-1}, n = 1, 2, ...\};$$

(iii) A uniform space X is called F -orbitally complete if every Cauchy filter which is a subfilter of an orbit of F at each $x \in X$ converges to a point of X.

VIII.8.Definition.1.8 [3]

Let (X, U) be a uniform space and let $F : X \to X$ be a mapping. A single valued mapping F is orbitally continuous if $\lim (T^{n_i}x) = u$ implies $T(T^{n_i}x) = Tu$ for each $x \in X$.

III. Main Results

III.1.Theorem.1.1

Let (X,U) be an F-orbitally complete Hausdorff uniform space defined by $\{d_i : i \in I\} = p^*$ and $(2^X, U^*)$ a hyperspace and let $F : X \to 2^X$ be a continuous mapping with Fx compact for each $x \in X$ Assume that

$$\min\{H_{i}(Fx, Fy)^{r}, d_{i}(x, Fx)d_{i}(y, Fy)^{r-1}, d_{i}(y, Fy)^{r}\} + a_{i}\min\{\frac{d_{i}(x, Fy)d_{i}(y, Fx)}{d_{i}(x, y)}, \frac{d_{i}(Fx, Fy)d_{i}(y, Fx)}{d_{i}(x, y)}\}$$

$$\leq \left[b_i d_i(x, Fx) + c_i d_i(x, y) + e_i d_i(y, Fx) \left\{ \frac{1 + d_i(x, Fy)}{1 + d_i(x, y)} \right\} \right] d_i(y, Fy)^{r+1}$$
...(1)

For all $i \in I$ and $x, y \in X$, where $r \ge 1$ is an integer a_i, b_i, c_i, e_i are real numbers such that $0 < b_i + c_i < 1$ then F has a fixed point.

Proof: Let X_0 be an arbitrary point in X and consider the sequence $\{x_n\}$ defined by

$$x_1 \in Fx_0, x_2 \in Fx_1..., x_n \in Fx_{n-1},...$$

Let us suppose that $d_i(x_n, Fx_n) > 0$ for each $i \in I$ and n = 0, 1, 2, ... Let $U \in U$ be an arbitrary entourage. Since β is a base for U, there exists $V(i, \varepsilon) \in \beta$ such that $V(i, \varepsilon) \subseteq U'$. Now $y \to d_i(x_0, y)$ is continuous on the compact set Fx_0 and this implies that there exists $x_1 \in Fx_0$ such that $d_i(x_0, x_1) = d_i(x_0, Fx_0)$. Similarly, Fx_1 is compact so there exists $x_2 \in Fx_1$ such that $d_i(x_1, x_2) = d_i(x_1, Fx_1)$. Continuing, we obtain a sequence $\{x_n\}$ such that $x_{n+1} \in Fx_n$ and $d_i(x_n, x_{n+1}) = d_i(x_n, Fx_n)$. For $x = x_{n-1}$, and $y = x_n$ by the condition (1), we have $\min \left\{ H_i(Fx_{n-1}, Fx_n)^r, d_i(x_{n-1}, Fx_{n-1})d_i(x_n, Fx_{n-1})^{r-1}, d_i(x_n, Fx_n)^r \right\} + a_i \min \left\{ \frac{d_i(x_{n-1}, Fx_n)d_i(x_n, Fx_{n-1})}{d_i(x_{n-1}, x_n)}, \frac{d_i(Fx_{n-1}, Fx_n)d_i(x_n, Fx_{n-1})}{d_i(x_{n-1}, x_n)} \right\}$ $\leq \left[b_i d_i(x_{n-1}, Fx_{n-1}) + c_i d_i(x_{n-1}, x_n) + c_i d_i(x_n, Fx_{n-1}) + c_i d_i(x_{n-1}, x_n) + c_i d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1} \right\}$ Since $d_i(x_n, Fx_{n-1}) = 0, x_n \in Fx_{n-1}$, hence we have $\min \left\{ d_i(x_n, x_{n+1})^r, d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1} \right\} \leq \left[b_i d_i(x_{n-1}, x_n) + c_i d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1} \right]$

It follows that-:

 $\min \{ d_i(x_n, x_{n+1})^r, d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})^{r-1} \} \leq \\ [(b_i + c_i) d_i(x_{n-1}, x_n)] d_i(x_n, x_{n+1})^{r-1} \\ \text{Since} \\ d_i(x_{n-1}, x_n) d_i(x_{n-1}, x_{n+1})^{r-1} \leq \\ [(b_i + c_i) d_i(x_{n-1}, x_n)] d_i(x_n, x_{n+1})^{r-1} \text{ is not possible} \\ (\text{as } 0 < b_i + c_i < 1), \text{ we have} \\ d_i(x_n, x_{n+1})^r \leq [b_i + c_i) d_i(x_{n-1}, x_n)] d_i(x_n, x_{n-1})^{r-1} \\ \end{cases}$

Where,

 $k = b_i + c_i \qquad 0 < k_i < 1$ Proceeding in this manner, we get $d_i(x_n, x_{n+1}) \le k_i d_i(x_{n-1}, x_n)$ $\le k_i^2 d_i(x_{n-2}, x_{n-1}) \le \dots \le k_i^n d_i(x_0, x_1).$ Hence, we obtain

 $d_i(x_n, x_{n+1})^r \leq k_i d_i(x_{n-1}, x_n) d_i(x_n, x_{n+1})$

$$d_{i}(x_{n}, x_{m}) \leq d_{i}(x_{n}, x_{n+1}) + d_{i}(x_{n+1}, x_{n+2}) + \dots + d_{i}(x_{m-1}, x_{m})$$
$$\leq (k_{i}^{n} + k_{i}^{n+1} + \dots + k_{i}^{m-1})d_{i}(x_{0}, x_{1})$$

$$\leq k_i^n (1 + k_i + \dots + k_i^{m-n-1}) d_i(x_0, x_1)$$

$$\leq \frac{k_i^n}{1 - k} d_i(x_0, x_1).$$

Since $\lim_{n \to \infty} k_i^n = 0$, it follows that there exists $N(i, \varepsilon)$ such that $d_i(x_n, x_m) < \varepsilon$ and hence $(x_n, x_m) \in U'$ for all $n, m \ge N(i, \varepsilon)$. Therefore the sequence $\{x_n\}$ is a Cauchy sequence in the d_i -uniformity on X.

Let $S_p = \{x_n : n \ge p\}$ for all positive integers p and let β be the filter basis $\{S_p : p = 1, 2, ...\}$. Then since $\{x_n\}$ is a d_i -Cauchy sequence for each $i \in I$, it is easy to see that the filter basis β is a Cauchy filter in the uniform space (X, U). To see this, we first note that

the family $\{V(i,\varepsilon): i \in I\}$ is a base for U as $p^* = \{d_i : i \in I\}$. Now since $\{x_n\}$ is a d_i -Cauchy sequence in X, there exists a positive integer p such that $d_i(x_n, x_m) < \varepsilon$ for $m \ge p, n \ge p$. This implies that $S_p \times S_p \subseteq V(i, \varepsilon)$. Thus, given any $U' \in U$, we can find an $S_p \in \beta$ such that $S_p \times S_p \subset U'$. Hence β is Cauchy filter in (X, U). Since (X, U) is F-orbitally complete and Hausdorff space, $S_p \to z$ for some $z \in X$. Consequently, $F(S_p) \to Fz$. Also $S_{p+1} \subset F(S_p) = \cup \{Fx_n : n \ge p\}$

For p = 1, 2, ... it follows that $z \in Fz$. Hence Z is a fixed point of F. This completes the proof.

If we take r = 1 in Theorem .1, then we obtain the following theorem.

III.2.Theorem1.2

Let (X,U) be an *F*-orbitally complete Hausdorff

$$a_{i} \min\left\{\frac{d_{i}(z,Tw)d_{i}(w,Tz)}{d_{i}(z,w)}, \frac{d_{i}(Tz,Tw)d_{i}(w,Tz)}{d_{i}(z,w)}\right\}$$

uniform space defined by $\{d_{i}: i \in I\} = p^{*}$ and $(2^{X}, U^{*})$

a hyperspace and let $F: X \to 2^X$ be a continuous mapping with Fx compact for each $x \in X$. Assume that

$$\min\{H_{i}(Fx, Fy), d_{i}(x, Fx), d_{i}(y, Fy)\} + \\a_{i}\min\{\frac{d_{i}(x, Fy)d_{i}(y, Fx)}{d_{i}(x, y)}, \frac{d_{i}(Fx, Fy)d_{i}(y, Fx)}{d_{i}(x, y)}\} \\ \leq \left[b_{i}d_{i}(x, Fx) + c_{i}d_{i}(x, y) + e_{i}d_{i}(y, Fx)\left\{\frac{1 + d_{i}(x, Fy)}{1 + d_{i}(x, y)}\right\}\right] \cdot (2)$$

For all $i \in I$ and $x, y \in X$, where a_i, b_i, c_i, e_i are real numbers such that $0 < b_i + c_i < 1$, then F has a fixed point.

We denote that if F is a single valued mapping on X, then we can write

$$d_i(Fx, Fy) = H_i(Fx, Fy), x, y \in X, i \in I.$$

Thus we obtain the following theorem as a consequence of the Theorem (2).

International Journal of advancement in electronics and computer engineering (IJAECE) Volume 3, Issue 4, July 2014, pp.313-316, ISSN 2278 -1412 Copyright © 2012: IJAECE (www.ijaece.com)

III.3.3Theorem 1.3

Let (X,U) be a T -orbitally complete Hausdorff uniform space let $T: X \to X$ be a T orbitally continuous mapping satisfying

min
$$\{d_i(Tx, Ty), d_i(x, Tx), d_i(y, Ty)\} +$$

$$a_{i} \min\left\{\frac{d_{i}(x,Ty)d_{i}(y,Tx)}{d_{i}(x,y)}, \frac{d_{i}(Tx,Ty)d_{i}(y,Ty)}{d_{i}(x,y)}\right\}$$

$$\leq \left[b_{i}d_{i}(x,Tx) + c_{i}d_{i}(x,y) + e_{i}d_{i}(y,Tx)\left\{\frac{1+d_{i}(x,Ty)}{1+d_{i}(x,y)}\right\}\right]$$
...(3)

for all $i \in I$ and $x, y \in X$, where a_i, b_i, c_i, e_i are real numbers such that $0 < b_i + c_i < 1$, then *T* has a fixed point and which is unique whenever $a_i > c_i + e_i > 0$

Proof-: Define a mapping F of X into 2^{R} by putting $F_{x} = \{T_{x}\}$ for all x in X. It follows that F satisfies the condition of Th.2. Hence T has a fixed point.

Now if $a_i > c_i + e_i > 0$, we show that T has a unique fixed point. Assume that T has two fixed point z and w which are distinct. Since $d_i(z, T_z) = 0$ and $d_i(w, T_w) = 0$, then by the condition (3),

$$a_{i} \min\left\{\frac{d_{i}(z,Tw)d_{i}(w,Tz)}{d_{i}(z,w)}, \frac{d_{i}(Tz,Tw)d_{i}(w,Tz)}{d_{i}(z,w)}\right\}$$

$$\leq \left[b_{i}d_{i}(z,Tz) + c_{i}d_{i}(z,w) + e_{i}d_{i}(w,Tz)\left\{\frac{1+d_{i}(x,Tw)}{1+d_{i}(x,w)}\right\}\right]$$

$$a_{i} \min\left\{\frac{d_{i}(z,w)d_{i}(w,z)}{d_{i}(z,w)}, \frac{d_{i}(z,w)d_{i}(w,z)}{d_{i}(z,w)}\right\}$$

$$\leq \left[b_{i}d_{i}(z,z) + c_{i}d_{i}(z,w) + e_{i}d_{i}(w,z)\left\{\frac{1+d_{i}(x,w)}{1+d_{i}(x,w)}\right\}\right]$$

$$a_i \min\{d_i(z, w), d_i(w, z)\} \le (c_i + e_i)d_i(z, w)$$

$$a_i d_i(z, w) \leq (c_i + e_i) d_i(z, w)$$

$$d_i(z,w) \leq \frac{(c_i+e_i)}{a_i}d_i(z,w)$$

This is impossible. Thus if $a_i > c_i + e_i > 0$. Then *T* has a unique fixed point in X. This completes the proof.

Reference

- [1] S. P. Acharya ,*Some results on fixed point in uniform space*, *Yokohama Math.J.* XXII(1) (1974)105-116.
- [2] S. N. Mishra and S. N. Singh, Bull. Cal.Math.Soc.77, 323-329, 1985.
- [3] D.Turkoglu and B.Fisher, Proc. Indian Acad. Sci. (math. Sci) 113, No.2, 183-187, 2003.
- [4] V. H. Badshah and Yogita R. Sharma, Journal of the Indian Math.Soc.78, 09-13, 2011.
- [5] B. C. Dhage, Indian J. Pure Appl.Math.16(3), 245-256,1985.
- [6] B. E. Rhoades, Pub. De L'Ins. Math. 25, 153-156, 1979.
- [7] B. K. Sharma, Cal. Math. Soc. 82, 533-536, 1990.
- [8] D. Turkoglu, O. Ozer and B. Fisher, Demonstration Math.2, 395-400, 1999.