A Fixed Point Theorem for Multivalued Mapping in Uniform Space

Bijendra Singh ${ }^{1}$, G.P.S Rathore ${ }^{2}$, Priyanka Dubey ${ }^{3}{ }^{\prime} \mathrm{Naval}^{\text {Singh }}{ }^{4}$
${ }^{1}$ Professor \& Dean,School of Studies in Mathematics,Vikram University, Ujjain;
${ }^{2}$ Sr.Scientist,K.N.K Horticulture College,Mandsaur(M.P);
${ }^{3}$ Research Scholar, School of Studies in Mathematics,Vikram University, Ujjain'(M.P);
${ }^{4}$ Govt.Science and Commerce College,Benazeer,Bhopal,(M.P);

Abstract

The aim of this paper to prove a fixed point theorem for multivalued mapping in orbitally complete Hausdorff uniform space and hyperspace. These results generalize several corresponding relations in uniform space.

Keywords: Fixed point, uniform space, multivalued mapping, orbitally complete,

I. Introduction

The well known Banach fixed point theorem for contraction mapping has been generalized and extended in many direction. Acharya[1], Mishra and Singh[2], Turkoglu and Fisher[3],have given many interesting results of fixed point theory in uniform space. Our results generalize the corresponding result of Badshah and Sharma[4].Since the uniform space form a natural extension of the matric space.there exists considerable literature of fixed point theory dealing with results on fixed point or common fixed points in uniform spaces(see for ex.[5]-[9]).

II. Definition

II.1.Definition 1.1[4]

A uniformity for a set X is a non-void family U of substs of $X \times X$ such that:
(1.1.1) each member of U contains the diagonal Δ, (1.1.2) if $u \in U$ then $u^{-1} \in U$,
(1.1.3) if $u \in U$ then $v \circ v \subseteq U$, for some $v \in U$
(1.1.4) if u and v are members of U, then $u \cap v \in U$ and
(1.1.5) if $u \in U$ and $u \subseteq v \subseteq X \times X$, then $v \in U$.

II.2. Definition.1.2 [3]

Let (X, U) be a uniform space. family $\left\{d_{i}: i \in I\right\}$ of pseudometric on X with indexingset I, is called an associated family for the uniformity U if the family

$$
\beta=\{V(i, \varepsilon): i \in I ; \varepsilon>0\},
$$

Where,

$$
V(i, \varepsilon)=\left\{(x, y): x, y \in X, d_{i}(x, y)<\varepsilon\right\}
$$

is the sub-base for the uniformity U. We may assume that β itself is a base by adjoining finite intersection of members of β, if necessary. The corresponding family of pseudometric is called an associated family for U.An associated family for U will be denoted by p^{*}.

> II.3.Definition1.3 [4]

Let A be a nonempty subset of a uniform space X.Define

$$
\Delta^{*}(A)=\sup \left\{d_{i}(x, y): x, y \in A, i \in I\right\}
$$

Where

$$
\left\{d_{i}: i \in I\right\}=p^{*},
$$

Then Δ^{*} is called an augmented diameter of A. Further, A is said to be p^{*} - bounded if $\Delta^{*}(A)<\infty$.

The pair (X, U) is called a uniform space.
IV.4.Definition.1.4 [3]
VIII.8.Definition.1.8 [3]

Let $2^{X}=\left\{A\right.$: A is a nonempty, Closed and p^{*}-bounded subset of $X\}$. For any nonempty subsets A and B of X, define

$$
\begin{aligned}
d_{i}(X, A) & =\inf \left\{d_{i}(x, a): a \in A\right\}, i \in I \\
H_{i}(A, B) & =\max \left\{\sup _{a \in A} d_{i}(a, B), \sup _{b \in B} d_{i}(A, b)\right\} \\
& =\sup _{x \in X}\left\{d_{i}(x, A)-d_{i}(x, B)\right\} .
\end{aligned}
$$

It is well known that on $2^{X}, H_{i}$ is a pseudometric, called the Hausdorff pseudometric induced by $d_{i}, i \in I$.
V.5.Definition.1.5 [3]

Let (X, U) be a uniform space with an augmented associated family $p^{*} \cdot p^{*}$ also induces a uniformity U^{*} on 2^{X} defined by the base

$$
\beta^{*}=\left\{V^{*}(i, \varepsilon): i \in I, \varepsilon>0\right\}
$$

Where

$$
V^{*}(i, \varepsilon)=\left\{(A, B): A, B \in 2^{X}, H_{i}(A, B)<\varepsilon\right\} .
$$

The space $\left(2^{X}, U^{*}\right)$ is a uniform space called the hyperspace of (X, U).
VI.6.Definition.1.6 [3]

The collection of all filters on a given set X is denoted by $\phi(X)$. An order relation is define on $\phi(X)$ by the rule $F_{1}<F_{2}$ if $F_{1} \supset F_{2}$. If $F^{*}<F$, then F^{*} is called a sub-filter of F.
VII.7.Definition.1.7 [3]

Let $\quad(X, U)$ be a uniform space defined by $\left\{d_{i}: i \in I\right\}=p^{*}$.If $\quad F: X \rightarrow 2^{X}$ is a multivalued mapping, then
(i) $x \in X$ is called a fixed point of F if $x \in F x$.
(ii) An orbit of F at a point $x_{0} \in X$ is a sequence $\left\{x_{n}\right\}$ given by

$$
O\left(F, x_{0}\right)=\left\{x_{n}: x_{n} \in F x_{n-1}, n=1,2, \ldots\right\}
$$

(iii) A uniform space X is called F-orbitally complete if every Cauchy filter which is a subfilter of an orbit of F at each $x \in X$ converges to a point of X.

Let (X, U) be a uniform space and let $F: X \rightarrow X$ be a mapping. A single valued mapping F is orbitally continuous if $\lim \left(T^{n_{i}} x\right)=u$ implies $T\left(T^{n_{i}} x\right)=T u$ for each $x \in X$.

III. Main Results

III.1.Theorem.1.1

Let (X, U) be an F-orbitally complete Hausdorff uniform space defined by $\left\{d_{i}: i \in I\right\}=p^{*}$ and $\left(2^{X}, U^{*}\right)$ a hyperspace and let $F: X \rightarrow 2^{X}$ be a continuous mapping with $F x$ compact for each $x \in X$ Assume that

$$
\begin{aligned}
& \min \left\{H_{i}(F x, F y)^{r}, d_{i}(x, F x) d_{i}(y, F y)^{r-1}, d_{i}(y, F y)^{r}\right\}+ \\
& \quad a_{i} \min \left\{\frac{d_{i}(x, F y) d_{i}(y, F x)}{d_{i}(x, y)}, \frac{d_{i}(F x, F y) d_{i}(y, F x)}{d_{i}(x, y)}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\leq\left[b_{i} d_{i}(x, F x)+c_{i} d_{i}(x, y)+e_{i} d_{i}(y, F x)\left\{\frac{1+d_{i}(x, F y)}{1+d_{i}(x, y)}\right\} d_{i}(y, F y)^{r-1}\right. \tag{1}
\end{equation*}
$$

For all $i \in I$ and $x, y \in X$, where $r \geq 1$ is an integer $a_{i}, b_{i}, c_{i}, e_{i}$ are real numbers such that $0<b_{i}+c_{i}<1$ then F has a fixed point.

Proof: Let X_{0} be an arbitrary point in X and consider the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{1} \in F x_{0}, x_{2} \in F x_{1} \ldots, x_{n} \in F x_{n-1}, \ldots
$$

Let us suppose that $d_{i}\left(x_{n}, F x_{n}\right)>0$ for each $i \in I$ and $n=0,1,2, \ldots$ Let $U^{\prime} \in U$ be an arbitrary entourage. Since β is a base for U, there exists $V(i, \varepsilon) \in \beta$ such that $V(i, \varepsilon) \subseteq U^{\prime}$. Now $y \rightarrow d_{i}\left(x_{0}, y\right)$ is continuous on the compact set $F x_{0}$ and this implies that there exists $x_{1} \in F x_{0}$ such that $d_{i}\left(x_{0}, x_{1}\right)=d_{i}\left(x_{0}, F x_{0}\right)$. Similarly, $F x_{1}$ is compact so there exists $x_{2} \in F x_{1}$ such that $d_{i}\left(x_{1}, x_{2}\right)=d_{i}\left(x_{1}, F x_{1}\right)$. Continuing, we obtain a sequence $\quad\left\{x_{n}\right\} \quad$ such that $\quad x_{n+1} \in F x_{n}$ and $d_{i}\left(x_{n}, x_{n+1}\right)=d_{i}\left(x_{n}, F x_{n}\right)$.

For $x=x_{n-1}$, and $y=x_{n}$ by the condition (1), we have $\min \left\{H_{i}\left(F x_{n-1}, F x_{n}\right)^{r}, d_{i}\left(x_{n-1}, F x_{n-1}\right) d_{i}\left(x_{n}, F x_{n-1}\right)^{r-1}, d_{i}\left(x_{n}, F x_{n}\right)^{r}\right\}$
$+a_{i} \min \left\{\frac{d_{i}\left(x_{n-1}, F \not x_{n}\right) d_{i}\left(x_{n}, F x_{n-1}\right)}{d_{i}\left(x_{n-1}, x_{n}\right)}, \frac{d_{i}\left(F x_{n}, F x_{n}\right) d_{i}\left(x_{n}, F x_{n}\right)}{d_{i}\left(x_{n-1}, x_{n}\right)}\right\}$
$\leq\left[b d_{i}\left(x_{n-1}, F x_{-1}\right)+c_{i} d_{i}\left(x_{n-1}, x_{n}\right)+e_{i} d_{i}\left(x_{n}, F x_{n-1}\right)\left\{\frac{1+d_{i}\left(x_{n-1}, F x_{x}\right)}{1+d_{i}\left(x_{n-1}, x_{n}\right)}\right\}\right] d_{i}\left(x_{n}, F x_{n}\right)^{-1}$
Since $d_{i}\left(x_{n}, F x_{n-1}\right)=0, x_{n} \in F x_{n-1}$, hence we have $\min \left\{d_{i}\left(x_{n}, x_{n+1}\right)^{r}, d_{i}\left(x_{n-1}, x_{n}\right) d_{i}\left(x_{n}, x_{n+1}\right)^{r-1}\right\} \leq$ $\left[b_{i} d_{i}\left(x_{n-1}, x_{n}\right)+c_{i} d_{i}\left(x_{n-1}, x_{n}\right)\right] d_{i}\left(x_{n}, x_{n+1}\right)^{r-1}$

It follows that-:
$\min \left\{d_{i}\left(x_{n}, x_{n+1}\right)^{r}, d_{i}\left(x_{n-1}, x_{n}\right) d_{i}\left(x_{n}, x_{n+1}\right)^{r-1}\right\} \leq$ $\left[\left(b_{i}+c_{i}\right) d_{i}\left(x_{n-1}, x_{n}\right)\right] d_{i}\left(x_{n}, x_{n+1}\right)^{r-1}$
Since
$d_{i}\left(x_{n-1}, x_{n}\right) d_{i}\left(x_{n}, x_{n+1}\right)^{r-1} \leq$
$\left[\left(b_{i}+c_{i}\right) d_{i}\left(x_{n-1}, x_{n}\right)\right] d_{i}\left(x_{n}, x_{n+1}\right)^{r-1}$ is not possible (as $0<b_{i}+c_{i}<1$), we have
$\left.d_{i}\left(x_{n}, x_{n+1}\right)^{r} \leq\left[b_{i}+c_{i}\right) d_{i}\left(x_{n-1}, x_{n}\right)\right] d_{i}\left(x_{n}, x_{n+1}\right)^{r-1}$
$d_{i}\left(x_{n}, x_{n+1}\right)^{r} \leq k_{i} d_{i}\left(x_{n-1}, x_{n}\right) d_{i}\left(x_{n}, x_{n+1}\right)$
Where,

$$
k=b_{i}+c_{i} \quad 0<k_{i}<1
$$

Proceeding in this manner, we get
$d_{i}\left(x_{n}, x_{n+1}\right) \leq k_{i} d_{i}\left(x_{n-1}, x_{n}\right)$

$$
\leq k_{i}^{2} d_{i}\left(x_{n-2}, x_{n-1}\right) \leq \ldots \leq k_{i}^{n} d_{i}\left(x_{0}, x_{1}\right)
$$

Hence, we obtain

$$
\begin{aligned}
& \begin{array}{l}
d_{i}\left(x_{n}, x_{m}\right) \leq d_{i}\left(x_{n}, x_{n+1}\right)+d_{i}\left(x_{n+1}, x_{n+2}\right)+\ldots+d_{i}\left(x_{m-1}, x_{m}\right) \\
\\
\quad\left(k_{i}^{n}+k_{i}^{n+1}+\ldots+k_{i}^{m-1}\right) d_{i}\left(x_{0}, x_{1}\right)
\end{array} \\
& \leq k_{i}^{n}\left(1+k_{i}+\ldots+k_{i}^{m-n-1}\right) d_{i}\left(x_{0}, x_{1}\right) \\
& \leq \frac{k_{i}^{n}}{1-k} d_{i}\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} k_{i}^{n}=0$, it follows that there exists $N(i, \varepsilon)$ such that $d_{i}\left(x_{n}, x_{m}\right)<\varepsilon$ and hence $\left(x_{n}, x_{m}\right) \in U^{\prime}$ for all $n, m \geq N(i, \varepsilon)$. Therefore the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in the d_{i}-uniformity on X.

Let $S_{p}=\left\{x_{n}: n \geq p\right\}$ for all positive integers p and let β be the filter basis $\left\{S_{p}: p=1,2, \ldots\right\}$. Then since $\left\{x_{n}\right\}$ is a d_{i}-Cauchy sequence for each $i \in I$, it is easy to see that the filter basis β is a Cauchy filter in the uniform space (X, U). To see this, we first note that
the family $\{V(i, \varepsilon): i \in I\}$ is a base for U as $p^{*}=\left\{d_{i}: i \in I\right\}$. Now since $\left\{x_{n}\right\}$ is a d_{i}-Cauchy sequence in X, there exists a positive integer p such that $d_{i}\left(x_{n}, x_{m}\right)<\varepsilon$ for $m \geq p, n \geq p$. This implies that $S_{p} \times S_{p} \subseteq V(i, \varepsilon)$. Thus, given any $U^{\prime} \in U$, we can find an $S_{p} \in \beta$ such that $S_{p} \times S_{p} \subset U^{\prime}$. Hence β is Cauchy filter in (X, U). Since (X, U) is F-orbitally complete and Hausdorff space, $S_{p} \rightarrow z$ for some $z \in X$. Consequently, $F\left(S_{p}\right) \rightarrow F z$. Also

$$
S_{p+1} \subset F\left(S_{p}\right)=\cup\left\{F x_{n}: n \geq p\right\}
$$

For $p=1,2, \ldots$ it follows that $z \in F z$.Hence Z is a fixed point of F. This completes the proof. If we take $r=1$ in Theorem . 1 , then we obtain the following theorem.

III.2.Theorem 1.2

Let (X, U) be an F-orbitally complete Hausdorff

$$
a_{i} \min \left\{\frac{d_{i}(z, T w) d_{i}(w, T z)}{d_{i}(z, w)}, \frac{d_{i}(T z, T w) d_{i}(w, T z)}{d_{i}(z, w)}\right\}
$$

uniform space defined by $\left\{d_{i}: i \in I\right\}=p^{*}$ and $\left(2^{x}, U^{*}\right)$
a hyperspace and let $F: X \rightarrow 2^{X}$ be a continuous mapping with $F x$ compact for each $x \in X$.Assume that

$$
\begin{align*}
& \min \left\{H_{i}(F x, F y), d_{i}(x, F x), d_{i}(y, F y)\right\}+ \\
& a_{i} \min \left\{\frac{d_{i}(x, F y) d_{i}(y, F x)}{d_{i}(x, y)}, \frac{d_{i}(F x, F y) d_{i}(y, F x)}{d_{i}(x, y)}\right\} \\
& \leq\left[b_{i} d_{i}(x, F x)+c_{i} d_{i}(x, y)+e_{i} d_{i}(y, F x)\left\{\frac{1+d_{i}(x, F y)}{1+d_{i}(x, y)}\right\}\right] . \tag{2}
\end{align*}
$$

For all $i \in I$ and $x, y \in X$, where $a_{i}, b_{i}, c_{i}, e_{i}$ are real numbers such that $0<b_{\mathrm{i}}+c_{\mathrm{i}}<1$, then F has a fixed point.

We denote that if F is a single valued mapping on X, then we can write

$$
d_{i}(F x, F y)=H_{i}(F x, F y), x, y \in X, i \in I
$$

Thus we obtain the following theorem as a consequence of the Theorem (2).

III.3.3Theorem 1.3

Let (X, U) be a T-orbitally complete Hausdorff uniform space let $T: X \rightarrow X$ be a T orbitally continuous mapping satisfying

$$
\begin{align*}
& \min \left\{d_{i}(T x, T y), d_{i}(x, T x), d_{i}(y, T y)\right\}+ \\
& a_{i} \min \left\{\frac{d_{i}(x, T y) d_{i}(y, T x)}{d_{i}(x, y)}, \frac{d_{i}(T x, T y) d_{i}(y, T y)}{d_{i}(x, y)}\right\} \\
& \leq\left[b_{i} d_{i}(x, T x)+c_{i} d_{i}(x, y)+e_{i} d_{i}(y, T x)\left\{\frac{1+d_{i}(x, T y)}{1+d_{i}(x, y)}\right\}\right] \tag{3}
\end{align*}
$$

for all $i \in I$ and $x, y \in X$, where $a_{i}, b_{i}, c_{i}, e_{i}$ are real numbers such that $0<b_{i}+c_{i}<1$, then T has a fixed point and which is unique whenever $a_{i}>c_{i}+e_{i}>0$

Proof-: Define a mapping F^{*} of X into Z^{N} by putting $F_{x}=\left\{T_{s}\right\}$ for all x in X.It follows that F satisfies the condition of Th.2. Hence T has a fixed point.
Now if $a_{i} \geqslant \sigma_{i}+z_{i} \geqslant 0$, we show that T has a unique fixed point.Assume that T has two fixed point z and w which are distinct.Since $d_{i}\left(\varepsilon, T_{z}\right)=0$ and $d_{i}\left(w, T_{W}\right)=0$, then by the condition (3),

$$
\begin{aligned}
& a_{i} \min \left\{\frac{d_{i}(z, T w) d_{i}(w, T z)}{d_{i}(z, w)}, \frac{d_{i}(T z, T w) d_{i}(w, T z)}{d_{i}(z, w)}\right\} \\
& \leq\left[b_{i} d_{i}(z, T z)+c_{i} d_{i}(z, w)+e_{i} d_{i}(w, T z)\left\{\frac{1+d_{i}(x, T w)}{1+d_{i}(x, w)}\right\}\right] \\
& a_{i} \min \left\{\frac{d_{i}(z, w) d_{i}(w, z)}{d_{i}(z, w)}, \frac{d_{i}(z, w) d_{i}(w, z)}{d_{i}(z, w)}\right\} \\
& \leq\left[b_{i} d_{i}(z, z)+c_{i} d_{i}(z, w)+e_{i} d_{i}(w, z)\left\{\frac{1+d_{i}(x, w)}{1+d_{i}(x, w)}\right\}\right]
\end{aligned}
$$

$$
a_{i} \min \left\{d_{i}(z, w), d_{i}(w, z)\right\} \leq\left(c_{i}+e_{i}\right) d_{i}(z, w)
$$

$$
a_{i} d_{i}(z, w) \leq\left(c_{i}+e_{i}\right) d_{i}(z, w)
$$

$$
d_{i}(z, w) \leq \frac{\left(c_{i}+e_{i}\right)}{a_{i}} d_{i}(z, w)
$$

This is impossible. Thus if $a_{i}>c_{i}+\theta_{i}>0$. Then T has a unique fixed point in X. This completes the proof.

Reference

[1] S. P. Acharya ,Some results on fixed point in uniform space, Yokohama Math.J. XXII(1) (1974)105-116.
[2] S. N. Mishra and S. N. Singh, Bull.Cal.Math.Soc.77, 323-329, 1985.
[3] D.Turkoglu and B.Fisher, Proc. Indian Acad. Sci. (math. Sci) 113, No.2, 183-187, 2003.
[4] V. H. Badshah and Yogita R. Sharma, Journal of the Indian Math.Soc.78, 09-13, 2011.
[5] B. C. Dhage, Indian J. Pure Appl.Math.16(3), 245-256,1985.
[6] B. E. Rhoades, Pub. De L'Ins. Math. 25, 153-156, 1979.
[7] B. K. Sharma, Cal. Math. Soc. 82, 533-536, 1990.
[8] D. Turkoglu, O. Ozer and B. Fisher, Demonstration Math.2, 395-400, 1999.

