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Abstract- This paper is aimed to study the Rayleigh Taylor instability of two superposed 
incompressible viscous fluids in porous medium in presence of FLR (finite Larmor radius) 
correction. The problem is numerically solved using the normal mode analysis method. A 
dispersion relation of two uniform fluids of different densities separated by a common 
boundary   is investigated by using appropriate boundary conditions. Numerical analysis is 
performed to show the effect of FLR and porosity on the growth rate of Rayleigh Taylor 
instability and it is found that the porosity and FLR correction have stabilizing influence on 
the growth rate of considered Rayleigh Taylor Configuration. 
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I. Introduction
Rayleigh Taylor instability is instability at the 

interface of two fluids of different densities that 
arises when denser fluid is supported by lighter fluid 
in presence of gravitational force. The study of R -T 
instability is imperative because it has relevance in 
nuclear fusion research, space physics and 
astrophysics. It plays crucial role in ICF (inertial 
confinement fusion) and important for nuclear 
fusion. It is also important in supernova implosion, 
explosion, crab nebula, and ionospheric 
irregularities.  Chandrasekhar [1]   has discussed R -
T instability in detailed in their monograph. 
Development of R -T instability is extended by 
Menikoff [2], Mikaelian [3] taking various 
assumption in non porous medium. Sanghvi and 
Chhajlani [4] have discussed combined effect of 
suspended particle and finite Larmor radius on the R-
T instability. Sharma and Chhajlani [5,6] have 
studied the rotation effect with FLR correction on R- 
T instability.  El-Sayed [7] has carried out the 
investigation of FLR correction on R -T instability of 
superposed viscous fluids. Recently, the 
consequence of viscosity and suspended particles on 
R-T instability is also studied by Sharma et al.  [8]. 

The problem of R-T instability in porous medium 
has great importance in geophysics, astrophysics and 
space physics. From this point of view authors and 
researchers have taken into account the R-T 
instability of fluids in porous medium.  Sharma and 
Spanos [9] have discussed   the instability of 
streaming fluids in porous medium. Sunil and Chand 
[10] have solved the R-T instability with effect of 
suspended particle and variable magnetic field in 
porous medium.  Recently Prajapati and Chhajlani 
[11] have investigated the effect of suspended 
particles and surface tension on K-H and R-T 
instability. More recently Singh and Dixit [12] have 
studied R-T instability of two superposed 
viscoelastic fluids with effect of rotation and 
suspended particles.  Kango[13] also conferred the 
R-T instability of two superposed viscoelastic fluids 
in porous medium. 

 In present study we wish to find out the effect of 
FLR correction and suspended particles on Rayleigh 
Taylor instability of two superposed viscous fluids in 
porous medium.  
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II. Formulation of Problem 
We consider a problem of two semi infinite non 

dissipative, homogeneous, incompressible viscous 
superposed magneto fluids   separated by a plane 
interface z=0 in porous medium. It is supposed that 
suspended particles of uniform size and spherical 
shape are permeated with fluids homogeneously and 
exert a stoke drag force KN(V-U) on the fluid where, 
N is density of suspended particles and K is a 
constant  given as  K =6πaµ.The fluid is under the 
action of magnetic field H(Hx, 0, 0) in X direction 
and  gravitational force g(0,0,-g) in Z direction. The 
resistance force [-(µ/k1) u] describes the macroscopic 
properties of unsteady flow in porous 
medium.Therefore the appropriate linearized basic 
equations of the problem are 
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Here the symbols  ρ, µ, p, µe  denotes   fluid 
density, viscosity,  fluid pressure and permeability of 
magnetic field respectively and δp, δρ, u (u,v,w),  v, 
h (hx,hy,hz), represents the perturbation in pressure, 
fluid density, velocity of fluid, velocity of suspended 
particle, and magnetic field respectively. The 
relaxation time for the suspended particles is denoted 
by τ = m/k.  

The stress tensor P


has the following components for 
the horizontal magnetic field H (Hx, 0, 0)  
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Here the parameter 0  is taken as 
4

R L
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where RL is finite Larmor radius and ΩL is ion gyro 
frequency. 

To investigate stability of the system, we take space 
and time dependent perturbation equation which 
represents propagation of waves. Here k is wave 
number along y axis and ( i n) is growth rate of the 
perturbation.  

                  intikyexp                                     (8) 

By using and solving equations  (1) to (8),  we obtain 
the general solution of the considered problem as 
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(9)                                      

Where α = mN/ρ is mass concentration of the 
suspended particle, υ = µ/ρ is kinematic viscosity 
and D is short form of d/dz.                                                                                                  

Equation (9) represents general differential 
equation including the effect of FLR correction, 
suspended particles and viscosity in porous medium.  
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III.        Dispersion Relation 
We consider the case of two superposed fluids of 

different densities ρ1 (z < 0), ρ2 (z > 0)   and different 
viscosities µ1 (z < 0), µ2 (z > 0)  separated by a plane 
interface z = 0. Thus, in this region at constant 
density ρ and viscosity µ, equation (9) becomes  
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 the general solution of equation (10) becomes  

         zqexpBkzexpAw 1111                 (12)    

                                                     At  (z < 0)                                          

          zqexpBkzexpAw 2222      (13)  

                                                     At  (z > 0)                                                                          

   Where A1,  B1 , A2  , B2  are arbitrary constant.  

The above solution must satisfy boundary condition 
at the interface z = 0  
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4. The total pressure should be continuous at the 
interface z = 0  

The condition (4) is satisfied by integrating equation 
(9) across the interface as follow s 
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Applying the boundary conditions on the system of 

two superposed viscous fluids we obtain the 
following equation. 
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The equation (15) is the characteristic dispersion 
relation for two superposed viscous fluids of 
different densities with effect of suspended particles 
and finite Larmor radius correction in porous 
medium. Sanghvi and Chhajlani [4] have 
investigated this result in absence of porous medium 
for nonviscous fluids. El-Sayed [7]  discussed this 
problem in non porous medium. Prajapati and 
Chhajlani [11] obtained dispersion relation with 
effect of surface tension in porous medium.  

IV.      Discussion 

  The Rayleigh Taylor instability of two superposed 
viscous fluids in porous medium is discussed for 
stable and unstable configuration by using Routh 
Hurwitz criterion. 

IV.1 Stable Configuration (β1 > β2)  

In this case we find that the constant term of 
equation (15) is positive and necessary condition of 
Routh Hurwitz criterion is fulfilled.  This result 
indicates that the system of superposed viscous 
fluids in porous medium is stable.  

  
IV.2 Unstable Configuration (β1 < β2) 

   In this case we find that the constant term of 
equation (15) is negative and the necessary condition 
of Routh Hurwitz criterion is not fulfilled. This 
indicates that the system has at least one real positive 
root which leads to the instability of system. We also 
find that FLR (finite Larmor radius), porosity, 
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permeability, and dynamic viscosity do not take part 
in the condition of instability.  

To study the impact of FLR (finite Larmor radius) 
and porosity on the growth rate of R-T instability we 
obtain dimensionless form of equation (14) by using 
following substitution  
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(16) 

By taking numerical values of parameters α′ = 0.35, 
ε = 0.2, ν0

* = 0.3, 0.5, 0.7, 0.9, β2-β1=1.5, k1
*=0.1, 

*
0f =0.6, and υ′*=0.5 we draw figure 1 between 

growth rate (c*) and wave number (k*). In this figure 
we found that FLR correction (, ν0

*) has stabilizing 
influence on the growth rate of RT instability and 
figure 2 is depicted by putting values of parameters 
as  α ′ = 0.35, ε = 0.13, 0.26, 0.39 ν0

* = 0.5, β2-
β1=1.5, k1

*=0.1, *
0f =0.6 and υ′*=1. We found that 

from figure 2 the growth rate is decreasing on 
increasing the value of porosity (ε) which indicates 
that porosity has stabilizing influence on the growth 
rate of RT instability. Therefore we conclude that R-
T instability of system gets stabilized in presence of 
FLR correction and porous medium.  

 

 

 

 

 

 
 

 

Fig 1 The growth rate C* (of unstable R-T mode) verses wave 
number k* for variation of FLR (finite Larmor radius). 

 

 

 

 

 

 

 

 
Fig.2 The growth rate C* (of unstable R-T mode) verses wave 

number k* for variation of porosity of medium. 
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