
International Journal of advancement in electronics and computer engineering (IJAECE)
Volume 8, Issue 2, Feb. 2018, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[101]

Survey paper on Floating Point Multiplier
Architectures on FPGA

Osho Patil1, Paresh Rawat2

1MTech Scholar, VLSI (ECE), TCST Bhopal (RGPV), oshopatil19@gmail.com, India;
2, HOD, ECE, TCST Bhopal (RGPV), parrawat@gmail.com, India;

Abstract
This paper presents FPGAs used to be fixed-point.
Floating-point operations are useful for computations
involving large dynamic range, but they require
significantly more resources than integer operations.
Multipliers play an important role in today’s digital
signal processing and various other applications.
With advances in technology, many researchers have
tried and are trying to design multipliers which offer
either of the following design targets – high speed,
low power consumption, regularity of layout and
hence less area or even combination of them in one
Multiplier thus making them suitable for various high
speed, low power and compact VLSI implementation.
Field Programmable Gate Arrays (FPGAs) are
semiconductor devices that are based around a matrix
of configurable logic blocks (CLBs) connected via
programmable interconnects. FPGAs can be
reprogrammed to desired application or functionality
requirements after manufacturing. This feature
distinguishes FPGAs from Application Specific
Integrated Circuits (ASICs), which are custom
manufactured for specific design tasks.

Keywords — Floating Point Arithmetic, Multipliers,
Digital Arithmetic, FPGA

I. INTRODUCTION
The complexity of the algorithms, floating point
operations are very hard to implement on FPGA. The
computations for floating point operations involve
large dynamic range, but the resources required for
this operations is high compared with the integer
operations. This multiplier is mainly used to multiply
two floating point numbers. Separate algorithm is
essential for multiplication of these numbers. Here
multiplication operation is simple than addition this is
especially true if we are using a 32-bit format. One of
the way to represent real numbers in binary is the
floating point formats. There are two different formats
for the IEEE 754 standard. Binary interchange format
and Decimal interchange format. In the multiplication
of floating point numbers involves a large dynamic
range which is useful in DSP applications. This paper
concentrates only on single precision normalized

Binary interchange format. The below figure shows
the IEEE 754 single precision binary format
representation; consisting of a one bit sign (S), an
eight bit exponent (E), and a twenty three bit fraction
(M or Mantissa). The term floating point refers to the
fact that the radix point (decimal point, or, more
commonly in computers, binary point) can "float";
that is, it can be placed anywhere relative to the
significant digits of the number. This position is
indicated separately in the internal representation, and
floating-point representation can thus be thought of as
a computer realization of scientific notation. Over the
years, a variety of floating-point representations have
been used in computers. However, since the 1990s, the
most commonly encountered representation is that
defined by the IEEE 754 Standard. The advantage of
floating-point representation over fixed-point and
integer representation is that it can support a much
wider range of values.
Field Programmable Gate Arrays (FPGAs) were first

introduced almost two and a half decades ago. Since
then they have seen a rapid growth and have become a
popular implementation media for digital circuits. The
advancement in process technology has greatly
enhanced the logic capacity of FPGAs and has in turn
made them a viable implementation alternative for
larger and complex designs. Further, programmable
nature of their logic and routing resources has a
dramatic effect on the quality of final device’s area,
speed, and power consumption. The programmable
logic and routing interconnect of FPGAs makes them
flexible and general purpose but at the same time it
makes them larger, slower and more power consuming
than standard cell ASICs. However, the advancement
in process technology has enabled and necessitated a
number of developments in the basic FPGA
architecture. These developments are aimed at further
improvement in the overall efficiency of FPGAs so
that the gap between FPGAs and ASICs might be
reduced. Field programmable Gate Arrays (FPGAs)
are pre-fabricated silicon devices that can be
electrically programmed in the field to become almost
any kind of digital circuit or system. For low to
medium volume productions, FPGAs provide cheaper
solution and faster time to market as compared to
Application Specific Integrated Circuits (ASIC) which
normally require a lot of resources in terms of time
and money to obtain first device. FPGAs on the other

International Journal of advancement in electronics and computer engineering (IJAECE)
Volume 8, Issue 2, Feb. 2018, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[102]

hand take less than a minute to configure and they cost
anywhere around a few hundred dollars to a few
thousand dollars.

II. LITERATURE SURVEY

S. Banescu, et.al [1] “Multipliers for floating-point
double precision and beyond on FPGAs,” The
implementation of high-precision floating-point
applications on reconfigurable hardware requires large
multipliers. Full multipliers are the core of floating-
point multipliers. Truncated multipliers, trading
resources for a well-controlled accuracy degradation,
are useful building blocks in situations where a full
multiplier is not needed.

This work studies the automated generation of such
multipliers using the embedded multipliers and adders
present in the DSP blocks of current FPGAs. The
optimization of such multipliers is expressed as a
tiling problem, where a tile represents a hardware
multiplier, and super-tiles represent combinations of
several hardware multipliers and adders, making
efficient use of the DSP internal resources. This tiling
technique is shown to adapt to full or truncated
multipliers. It addresses arbitrary precisions including
single, double but also the quadruple precision
introduced by the IEEE-754-2008 standard and
currently unsupported by processor hardware. An
open-source implementation is provided in the
FloPoCo project.

M. K. Jaiswal, et.al [2] “Area-Efficient
FPGAImplementation of Quadruple Precision
Floating Point Multiplier,” This paper presents FPGA
based hardware architectures for floating point (FP)
multipliers. The proposed multiplier architectures are
aimed for single precision (SP), double precision (DP),
double-extended precision (DEP) and quadruple
precision (QP) implementation. This paper follows the
standard computational flow for FP multiplication.
The mantissa multiplications, the most complex unit
of the FP multiplication, are built using efficient use of
Karatsuba methodology integrated with the optimized
used of in-built 25x18 DSP48E blocks available on
the Xilinx Virtex-5 onward FPGA devices. It also
combined with the other techniques (radix-4 booth
encoding for small multipliers, partial products
reduction using 4:2, 3:2, 2:2 counters; compression of
multioperands adders) used at places, to improve the
design. The proposed architectures out-performs the
available state-of-the art, and used only 1-DSP48, 3
DSP-48, 6 DSP48 and 18 DSP48 for SP, DP, DEP,
and QP multipliers respectively.

S. Srinath et.al [3], “Automatic generation of high-
performance multipliers for FPGAs with asymmetric
multiplier blocks,” The introduction of asymmetric
embedded multiplier blocks in recent Xilinx FPGAs

complicates the design of larger multiplier sizes. The
two different input bit widths of the embedded
multipliers lead to two different shifting factors for the
partial product outputs. This makes even the most
straightforward multiplier design less intuitive. In this
paper, we present a methodology and set of equations
to automatically generate the Verilog for a multiplier
using asymmetric embedded multiplier cores. The
presented technique also uses intelligent
rearrangement of the multiplier block outputs into
partial product terms to reduce the overall delay of the
circuit. Multipliers created with our generator are
faster and use fewer DSP blocks than those created
using Xilinx Core Generator or by simply using the '*'
operator in Verilog. It also uses fewer LUTs than
those created using the '*' operator. Finally, the
presented generator can create multipliers larger than
possible with Core Generator, and is limited only by
the number of available embedded multipliers.

F. de Dinechin, et.al [4] “Large multipliers with fewer
DSP blocks,” Recent computing-oriented FPGAs
feature DSP blocks including small embedded
multipliers. A large integer multiplier, for instance for
a double-precision floating-point multiplier, consumes
many of these DSP blocks. This article studies three
non-standard implementation techniques of large
multipliers: the Karatsuba-Of man algorithm, non-
standard multiplier tiling, and specialized squarers.
They allow for large multipliers working at the peak
frequency of the DSP blocks while reducing the DSP
block usage. Their overhead in term of logic resources,
if any, is much lower than that of emulating embedded
multipliers. Their latency overhead, if any, is very
small. Complete algorithmic descriptions are provided,
carefully mapped on recent Xilinx and Altera devices,
and validated by synthesis results.

M. K. Jaiswal et.al [5] “VLSI Implementation of
Double-Precision Floating-Point Multiplier Using
Karatsuba Technique,” The double-precision floating-
point arithmetic, specifically multiplication, is a
widely used arithmetic operation for many scientific
and signal processing applications. In general, the
double-precision floating-point multiplier requires a
large 53×53 mantissa multiplication in order to get the
final result. This mantissa multiplication exists as a
limit on both area and performance bounds of this
operation. This paper presents a novel way to reduce
this large multiplication. The proposed approach in
this paper allows to use less amount of multiplication
hardware compared to the traditional method. The
multiplication is done by using Karatsuba technique.
This design is specifically targeting Field
Programmable Gate Array (FPGA) platforms, and it
has also been evaluated on ASIC flow. The proposed
module gives excellent performance with efficient use
of resources. The design is fully compatible with the
IEEE standard precision. The proposed module has

International Journal of advancement in electronics and computer engineering (IJAECE)
Volume 8, Issue 2, Feb. 2018, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[103]

shown a better performance in comparison with the
best reported multipliers in the literature.

F. de Dinechin, et.al [6] “Automatic generation of
polynomial-based hardware architectures for function
evaluation” Many applications require the evaluation
of some function through polynomial approximation.
This article details an architecture generator for this
class of problems that I’m-proves upon the literature
in two aspects. Firstly, it benefits from recent
advances related to constrained-coefficient polynomial
approximation. Secondly, it refines the error analysis
of polynomial evaluation to reduce the size of the
multipliers used. As a result, architectures for
evaluating arbitrary functions with precisions up to 64
bits, makingefficient use of the resources of recent
FPGAs, can be obtained in seconds. An open-source
implementation is pro-vided in the FloPoCo project.

G. Govindu, et. al [7] Analysis of high-performance
floating-point arithmetic on FPGAs.” FPGAs are
increasingly being used in the high performance and
scientific computing community to implement
floating-point based hardware accelerators. In this
paper we analyze the floating-point multiplier and
adder/subtractor units by considering the number of
pipeline stages of the units as a parameter and use
throughput/area as the metric. We achieve throughput
rates of more than 240 MHz (200 MHz) for single
(double) precision operations by deeply pipelining the
units. To illustrate the impact of the floating-point
units on a kernel, we implement a matrix
multiplication kernel based on our floating-point units
and show that a state-of-the-art FPGA device is
capable of achieving about 15GFLOPS (8GFLOPS)
for the single (double) precision floating-point based
matrix multiplication. We also show that FPGAs are
capable of achieving up to 6x improvement (for single
precision) in terms of the GFLOPS/W (performance
per unit power) metric over that of general purpose
processors. We then discuss the impact of floating-
point units on the design of an energy efficient
architecture for the matrix multiply kernel.

III. PROBLEM STATEMENT

This paper represents previous paper problem
statement are the mantissa multiplications, the most
complex unit of the FP multiplication.

IV. METHOD ARCHITECTURE

The floating point multiplier implementation is
relatively simple compared to other floating point
arithmetic operations. The crucial part of the floating
point multiplication lies in mantissa multiplication.

This is the bottleneck in the performance of FPU
multiplication. The mantissa of quadruple precision
floating point numbers is 113-bit (including 1 hidden
bit) in length and in general, this needs
implementation of a large 113 × 113 multiplier in
hardware, which is very expensive in terms of area as
well as performance.
This massive part of the multiplication arithmetic

operation. The basic underlying concept used here is
karatsuba multiplication technique. We have divided
the mantissa operands in a beautiful manner which
leads us to achieve the better result by incorporation of
the Karatsuba Method, on the FPGA based platform.
Before proceeding to the detail implementation we
first explain the basics of the Karatsuba Method.
Karatsuba Multiplication is a fast multiplication
algorithm. It reduces the multiplication of two -digit
numbers from simple 2 to at most 3 log2 3 ≈
3 1.585 single digit multiplication. The basic steps for
this algorithm depend on the divide and conquer
paradigm and proceeds in the following ways.

Let & are two -digit numbers. By decomposing
these number in two parts, for some base , we can
rewrite them as below,

1 0. mW W B W

1 0. mX X B W
Where 0 & 0 are of -digit. Now, we can write
the Product of & as follows,

1 0 1 0(.)(.)m mWX W B W X B X

2
1 1 1 0 0 1 0 0. . (. .) .m mW X B W X W X B W X

2 .m mB B

Where,

1 1, 0 1.W X W X +W1X0

0 0.W X
These tell us to use four multiplications to get the
complete result. But, Karatsuba method leads to the
use of only three multiplications to get the complete
result. This can be achieved as follows. We can
modify the as below,

1 0 0 1 1 1 0 0 1 1 0 0(. .) (. .) (. .)W X W X W X W X W X W X

1 0 1 0 1 1 0 0()() . .W W X X W X W X

1 0 1 0()()W W X X

We can also have an another variant of as follows,

International Journal of advancement in electronics and computer engineering (IJAECE)
Volume 8, Issue 2, Feb. 2018, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[104]

1 0 1 0()()W W X X
Which requires only one multiplication instead of two,
with some extra overhead of addition and subtraction.
Thus to get complete product of & we need three
Multiplication instead of four. Similarly by extending
this technique, and splitting the Operands into three
parts, we reduce number of multipliers from 9 to 6.
The details are described as follows:

We can divide the operands & as follows

2
2 1 0. .m mW W B W B W

2
2 1 0. .m mX X B X B X

Where 1, 1, 0 0 are of m-digit. Now, the
product of & will be as follows.

2
2 1 0. (. .)m mW X W B W B W
2

2. 1 0(.)m mX B X B X
4 3

2 2 2 1 1 2. . (. .)m mW X B W X W X B
2 2

2 0 0 2 1 1(. .) . .m mW X W X B W X B

1 0 0 1 0 0(. .) .mW X W X B W X

4 2 3 2
2 1 0 2 1 0.m m m m mB B B B B

Where,

2 2 2 1 1 1 0 0 0. , . , .W X W X W X
And

2 2 1 1 2 2 2 1 1(. .) (. .)W X W X W X W X

0 1 0 0 1. .W X W X

Up to this level we need 9 multiplier to accomplish the
task. The number of multiplications can be reduced by

modifying the 2, 2 0and as below.

2 2 1 1 2 2 2 1 1(. .) (. .)W X W X W X W X

2 2 1 1(. .)W X W X

2 1 2 1 2 1()()W W X X
Similarly,

1 2 0 2 0 2 0

0 1 0 1 0 1 0

()()

()()

W W X X

W W X X

We can also have an another variant of ′ as
follows,

2 2 1 2 1 2 1

1 2 0 2 0 2 0

0 1 0 1 0 2 0

()()

()()

()()

W W X X

W W X X

W W X X

In the present context, for the quadruple precision
multiplication, we require 113×113 multiplier. For,
this we have divided the operands in two unequal parts,
51-bit and 62-bit.Here the splitting of the operands is
based on the availability of multiplier IP core on the
Xilinx FPGA platform. Thus, as discussed above for
the karatsuba method, we need one 51-bit multiplier,
one 62-bit multiplier and one 63-bit multiplier.
Further, the keys lies in the effective implementation
of these sub-multipliers. Based on the availability of
17 × 17 multiplier, we have implemented the 51-bit
multiplier by three partitioning extension of Karatsuba
method, and 62- bit & 63-bit multiplier have been
implemented by two partitioning method. The 62-bit
& 63-bit multiplier, further have divided in two parts,
requires three 34-bit multipliers, for each.
The Implementation of each 34-bit multiplier needs
three 17×17 multiplier by two partition method. Both
of the 62- bit and 63-bit multiplier will require 9, 17 ×
17 multiplier, individually. And, the 51-bit multiplier
will need 6, 17×17multiplier, by three partitioning
method. Thus, a total of 24, 17 × 17 multiplier blocks
are required to do 113 × 113 multiplication, which has
a large saving in terms of area. Whereas, by general
approach 113 × 113 multiplication do need 49, 17×17
multiplier blocks. The detail implementation of these
multiplication has been explained in the next section.

V. CONCLUSIONS
This paper presents Floating-point operations are
useful for computations involving large dynamic
range, but they require significantly more resources
than integer operations. Multipliers play an important
role in today’s digital signal processing and various
other applications.

REFERENCES
[1] S. Banescu, F. de Dinechin, B. Pasca, and R.
Tudoran,“Multipliers for floating-point double
precision and beyond on FPGAs,” SIGARCH
Comput. Archit. News, vol. 38, pp.73–79, Jan 2011.

[2] M. K. Jaiswal and R. C. C. Cheung, “Area-
Efficient FPGA Implementation of Quadrupl Precision
Floating Point Multiplier, “in The IEEE 26th

International Journal of advancement in electronics and computer engineering (IJAECE)
Volume 8, Issue 2, Feb. 2018, pp.101-105, ISSN 2278 -1412

Copyright © 2012: IJAECE (www.ijaece.com)

[105]

International Parallel and Distributed Processing
Symposium Workshops & PhD Forum(IPDPSW
2012). Shanghai, China: IEEE Computer Society,
May 2012, pp. 369–375.

[3] X. Wang and M. Leeser, “Vfloat: A variable
precision fixed and floating-point library for
reconfigurable hardware,” ACM Trans.
Reconfigurable Technol. Syst., vol. 3, no. 3, pp. 16:1–
16:34, Sep. 2010.

[4] S. Srinath and K. Compton, “Automatic generation
of high-performance multipliers for fpgas with
asymmetric multiplier blocks,” in Proceedings of the
18th annual ACM/SIGDA international symposium
on Field programmable gate arrays, ser. FPGA ’10,
2010, pp. 51–58.

[5] M. K. Jaiswal and R. C. C. Cheung, “Area-
efficient architectures for double precision multiplier
on FPGA, with run-time-reconfigurable dual single
precision support, “Microelectronics Journal, vol. 44,
no. 5, pp. 421–430, May 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002
6269213000591

[6] F. de Dinechin, “Large multipliers with fewer DSP
blocks,” in International Conference on Field
Programmable Logic and Applications, 2009, pp.
250–255.

[7] M. K. Jaiswal and R. C. C. Cheung, “VLSI
Implementation of Double-Precision Floating-Point
Multiplier Using Karatsuba Technique,” Circuits,
Systems, and Signal Processing, vol. 32, pp. 15–27,
2013. [Online]. Available:
http://dx.doi.org/10.1007/s00034-012-9457-3

[8] A. Karatsuba and Y. Of man, “Multiplication of
Many-Digital Numbers by Automatic Computers,” in
Proceedings of the USSR Academy of Sciences, vol.
145, 1962, pp. 293–294.

[9] “IEEE standard for floating-point arithmetic,”
IEEE Std 754-2008, pp. 1–70, Aug 2008.

[10] Xilinx, “Logic ORE IP Floating-Point
Operatorv5.0.” [Online]. Available:
http://www.xilinx.com/support/documentation/ip_doc
umentation/floating_point_ds335.pdf

[11] “Logic ORE IP Floating-Point Operator v7.1.”
[Online].Available:
http://www.xilinx.com/support/documentation/ipdocu
mentation/ru/floating-point.html

