
International Journal of advancement in electronics and computer engineering (IJAECE)

Volume 06, Issue 5, June 2017, pp.514-518, ISSN: 2274-1412

 Copyright © 2012: IJAECE (www.ijaece.com)

[514]

Result Analysis of Low power and area efficient Reverse

Converter Design via Parallel-Prefix Adders

Mukesh Kumar Pandey, Suresh Gawande

M.Tech Scholar, Dept. of EC, Bhabha Engineering Research Institute, Bhopal,

mukeshpandey1990@gmail.com, India;

Professor, Dept. of EC, Bhabha Engineering Research Institute, Bhopal,India;

Abstract – The implementation of residue number system reverse converters based on well-known

regular and modular parallel prefix adders is analyzed. The VLSI implementation results show a

significant delay reduction and area × time2 improvements, all this at the cost of higher power

consumption, which is the main reason preventing the use of parallel-prefix adders to achieve

high-speed reverse converters in nowadays systems. Hence, to solve the high power consumption

problem, novel specific hybrid parallel-prefix-based adder components those provide better

tradeoff between delay and power consumption. The power, area and delay of the proposed system

are analysis using Xilinx 14.2.

 Keywords: parallel-prefix adder, residue number system (RNS), reverse converter.

I. Introduction

Power dissipation has become one of the major

limiting factors in the design of digital ASICs. Low

power dissipation will increase the mobility of the ASIC

by reducing the system cost, size and weight. DSP blocks

are a major source of power dissipation in modern

ASICs. The residue number system (RNS) has, for a long

time, been proposed as an alternative to the regular two’s

complement number system (TCS) in DSP applications

to reduce the power dissipation. Some research have

shown that implementing FIR filters in residue number

system (RNS) instead of two’s complement number

system (TCS) can give a reduction in power dissipation.

FIR filters are among the less complex DSP blocks. A

general sketch of how RNS computations can be

performed is shown in figure 1.

Fig. 1: The basic principle of RNS

The Residue Number System plays a significant role

in the battery based and portable devices because of its

low power features and its competitive delay. The

Residue number system reverse converter is designed

with parallel prefix addition by using new components

methodology for higher speed operation[1].The RNS

consists of two main components forward and the reverse

converter that are integrated with the existing digital

system. The forward converter performs the operation of

converting the binary number to the modulo number

whereas the reverse converter performs the operation of

reverse converting the modulo number to the binary

number which is the hard and time consuming process

compared with the forward converter. The fundamental

RNS concepts such as 1)RNS definition with properties

and their applications,2)consideration of modulo set

selection,3)design of forward converter,4)modulo

arithmetic units,4)design of reverse converter are

discussed[2]. The voltage over scaling (VOS) technique

is applied to the residue number system to achieve high

energy efficiency. The VOS technique introduces soft

errors which degrades the performance of the system. To

overcome these soft errors a new technique is

implemented called joint RNS-RPR (JRR) which is the

combination of RNS and the reduced precision

redundancy. This method provides the advantage of

satisfying the basic properties of RNS includes shorter

critical path, reduced complexity and low power [3].New

Architectures are presented for the module sets (2n-1, 2n,

International Journal of advancement in electronics and computer engineering (IJAECE)

Volume 06, Issue 5, June 2017, pp.514-518, ISSN: 2274-1412

 Copyright © 2012: IJAECE (www.ijaece.com)

[515]

2n+1) for the conversion from the residue to the binary

equivalents [4]. Here the speed and the cost are major

concern. Distributed arithmetic principles are used to

perform the inner product computation in [5].The input

data which are in the residue domain which are encoded

using the Thermometer code format and the outputs are

encoded using the One hot code format. Compared to the

conventional method which used Binary code format, the

proposed system which achieves higher operating speed.

The residue number system which provides carries free

addition and fully arithmetic operation [6], for several

applications such as digital signal processing and

cryptography [7]-[11]. In paper present a comprehensive

method which uses the parallel prefix adder in selected

position, thereby using the shift operation on one bit left

to design a multiplier on the same design module to

achieve a fast reverse converter design. The usage on

parallel prefix structure in the design leads to higher

speed in operation meanwhile it increases the area and

power consumption. In order to compensate the tradeoff

between the speed, area and power consumption, a novel

specific hybrid parallel prefix based adder components

are used to design the reverse converter. This hybrid

design which provides the significant reduction in the

power delay product (PDP) metric and leads to

considerable improvements in the area time² product

(AT²) in comparison with the traditional converters

without using parallel prefix adders.

II. Theory

II.1. Field-Programmable Gate Array

A field-programmable gate array (FPGA) is a

semiconductor device that can be configured by the

customer or designer after manufacturing—hence the

name "field-programmable". To program an FPGA one

must specify how they want the chip to work with a logic

circuit diagram or a source code in a hardware

description language (HDL). FPGAs can be used to

implement any logical function that an application-

specific integrated circuit (ASIC) could perform, but the

ability to update the functionality after shipping offers

advantages for many applications.

FPGAs contain programmable logic components

called "logic blocks", and a hierarchy of reconfigurable

interconnects that allow the blocks to be "wired

together"—somewhat like a one-chip programmable

breadboard. Logic blocks can be configured to perform

complex combinational functions, or merely simple logic

gates like AND and XOR. In most FPGAs, the logic

blocks also include memory elements, which may be

simple flip-flops or more complete blocks of memory.

For any given semiconductor method, FPGAs are

sometimes slower than their fixed ASIC counterparts.

They additionally draw a lot of power, and usually

achieve less functionality using a given quantity of

circuit complexity. However their benefits include a

shorter time to market, ability to re-program within the

field to fix bugs, and lower non-recurring engineering

prices. Vendors may take a middle road by developing

their hardware on ordinary FPGAs, however manufacture

their final version thus it will no longer be changed once

the design has been committed.

Field Programmable Gate Array (FPGA) devices were

introduced by Xilinx within the mid-1980s. They differ

from CPLDs in design, storage technology, variety of

inbuilt options, and cost, and are aimed toward the

implementation of high performance, large-size circuits.

Fig.2 FPGA Architecture

The basic design of an FPGA is illustrated in figure 2.

It consists of a matrix of CLBs (Configurable Logic

Blocks), interconnected by an array of switch matrices.

The internal design of a CLB is totally different from

that of a PLD 1st, rather than implementing SOP

expressions with AND gates followed by OR gates (like

in SPLDs), its operation is generally based on a LUT

(lookup table). Moreover, during an FPGA the number of

flip-flops is far additional abundant than in a CPLD,

therefore allowing the construction of additional refined

sequential circuits. Besides JTAG support and interface

to numerous logic levels, different further options are

included in FPGA chips, like SRAM memory, clock

multiplication (PLL or DLL), PCI interface, etc. Some

chips additionally include dedicated blocks, like

multipliers, DSPs, and microprocessors.

Another basic difference between an FPGA and a

CPLD refers to the storage of the interconnects. Whereas

CPLDs are non-volatile (that is, they make use of

antifuse, EEPROM, Flash, etc.), most FPGAs use

SRAM, and are thus volatile. This approach saves area

and lowers the value of the chip because FPGAs present

a very large number of programmable interconnections,

however needs an external ROM. There are, however,

non-volatile FPGAs (with antifuse), which could be

advantageous once reprogramming isn't necessary.

FPGAs are very sophisticated. Chips manufactured

with state-of-the-art0.09mmCMOS technology, with 9

International Journal of advancement in electronics and computer engineering (IJAECE)

Volume 06, Issue 5, June 2017, pp.514-518, ISSN: 2274-1412

 Copyright © 2012: IJAECE (www.ijaece.com)

[516]

copper layers and over 1,000 I/O pins, are currently

offered.

III. Method

The main reason for the high power consumption and

space overhead of those adders is that the recursive

impact of generating and propagating signals at every

prefix level. However, this technique suffers from high

fan-out, which can build it usable just for small width

operands. However, we tend to may address this

drawback by eliminating the additional prefix level and

using a changed excess-one unit instead. In contrast to

the BEC, this modified unit is ready to perform a

conditional increment supported control signals as shown

in Fig. 3, and also the resulted hybrid modular parallel-

prefix excess-one (HMPE) adder is pictured in Fig.4. The

HMPE consists of 2 parts:

1) A regular prefix adder

2) A modified excess-one unit.

First, 2 operands are added using the prefix adder,

and therefore the result's conditionally incremented

afterward based on control signals generated by the

prefix section therefore on assure the single zero

illustration.

Fig.3 Modified excess-one unit

Fig.4 HMPE structure

In this style, the adder style is implemented by using

the berkelium adder parallel prefix structure. Here the

primary 2 operands are added by using the prefix adder

preprocessing stage thereby generating the propagate and

generate equation. the primary stage processed signal get

passed to subsequent stage known as the prefix carry

tree, this stage once more computes, generate and

propagate equation by using the previous output and

every one the logic cells used within the berkelium adder

network. These processed signals are passed to the post

processing block.

Fig.5 Parallel prefix adder based multiplier design

The generated carry bits in initial 2 stages of the

parallel prefix network get passed to the last stage. Again

the generated and prorogated signal within the second

stage get passed to the last stage referred to as the post

process stage, this stage computes the total and also the

carryout signal by using the processed generate and

propagate equation to style the adder for (4n+1) modulo

addition for n=5.In that style the prorogated signal or the

generated signal get left shifted to 1-bit position and so

the sum get obtained for planning the multiplier factor.

IV. Result

Proposed system simulation results are as follows:

Fig.6: simulation output

International Journal of advancement in electronics and computer engineering (IJAECE)

Volume 06, Issue 5, June 2017, pp.514-518, ISSN: 2274-1412

 Copyright © 2012: IJAECE (www.ijaece.com)

[517]

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

sel

a[23..0]

b[23..0]

c[23..0]

sel

a[23..0]

b[23..0]

c[23..0]

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

%
A[23..0]

B[23..0]

MODULO

+
A[23..0]

B[23..0]

ADDER

%
A[23..0]

B[23..0]

MODULO

IN[2..0] OUT[7..0]

DECODER

IN[2..0] OUT[7..0]

DECODER

IN[2..0] OUT[7..0]

DECODER

WideOr15_OUT0

WideOr16_OUT0

WideOr17_OUT0

WideOr21_OUT0

WideOr22_OUT0

WideOr23_OUT0

WideOr7_OUT0

WideOr8_OUT0

sdata[7]_OUT0

sdata[5]_OUT0

WideOr9_OUT0

WideOr10_OUT0

WideOr11_OUT0

sdata[8]_OUT0

xor_data~47_OUT0

xor_data~46_OUT0

xor_data~45_OUT0

xor_data~44_OUT0

xor_data~43_OUT0

xor_data~42_OUT0

xor_data~41_OUT0

xor_data~40_OUT0

xor_data~39_OUT0

xor_data~38_OUT0

xor_data~37_OUT0

xor_data~36_OUT0

xor_data~35_OUT0

xor_data~34_OUT0

xor_data~33_OUT0

xor_data~32_OUT0

xor_data~31_OUT0

xor_data~30_OUT0

xor_data~29_OUT0

xor_data~28_OUT0

xor_data~27_OUT0

xor_data~26_OUT0

xor_data~25_OUT0

xor_data~24_OUT0

mux:l_shift_mux_c

WideOr12_OUT0

WideOr13_OUT0

WideOr14_OUT0

bit_shift_data_OUT0

WideOr18_OUT0

WideOr19_OUT0

WideOr20_OUT0

sdata[6]_OUT0

sdata[4]_OUT0

Decoder2_OUT

bdata[1][7..0]

clk

sout[6][2..0]

sdata[1][2..0]

bdata[2][7..0]

temp[6][2..0]

sbox_out[23..0]

sdata[3][2..0]

sout[8][2..0]

sout[3][2..0]

temp[8][2..0]

sdata[7][2..0]

sdata[5][2..0]

sout[4][2..0]

temp[3][2..0]

sout[1][2..0]

ldata_inrot[23..0]

sdata[8][2..0]

xor_data[23..0]

ldata_rot[23..0]

data_left[23..0]

mux:l_shift_mux

encrypt

mux:l_in_shift_mux

en_data_l[23..0]

sout[5][2..0]

temp[4][2..0]

bit_shift_data[23..0]

temp[5][2..0]

bdata[0][7..0]

sdata[2][2..0]

sout[7][2..0]

bshift_data[0][7..0]

sout[2][2..0]

temp[1][2..0]

bshift_data[1][7..0]

temp[7][2..0]

sdata[6][2..0]

sdata[4][2..0]

bshift_data[2][7..0]

temp[2][2..0]

Mod1

24' h000100 --

data_right[23..0]

en_data_r[23..0]

Add0

Mod0

24' h000100 --

key[23..0]

WideOr0

Decoder0

WideOr1

WideOr2

Decoder1

WideOr3

WideOr4

WideOr5

Decoder2

WideOr6

Fig.7 Scalable Encryption algorithm Top Module

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

SEL

DATAA

DATAB
OUT0

MUX21

0

1

c[1..1]~1

c[3..3]~3

c[4..4]~4

c[5..5]~5

c[6..6]~6

c[7..7]~7

c[8..8]~8

c[9..9]~9

c[10..10]~10

c[11..11]~11

c[12..12]~12

c[13..13]~13

c[14..14]~14

c[15..15]~15

c[16..16]~16

c[17..17]~17

c[18..18]~18

c[19..19]~19

c[20..20]~20

c[22..22]~22

c[23..23]~23

c[0]~0

sel

a[23..0]

b[23..0]

c[23..0]

c[21..21]~21

c[2..2]~2

Fig.8 Scalable Encryption Algorithm Multiplexer

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLRD Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

sel

a[23..0]

b[23..0]

c[23..0]

sel

a[23..0]

b[23..0]

c[23..0]

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

D Q

PRE

ENA

CLR

%
A[23..0]

B[23..0]

MODULO

+
A[23..0]

B[23..0]

ADDER

%
A[23..0]

B[23..0]

MODULO

IN[2..0] OUT[7..0]

DECODER

IN[2..0] OUT[7..0]

DECODER

WideOr15_OUT0

WideOr16_OUT0

WideOr17_OUT0

sdata[3]_OUT0

WideOr18_OUT0

WideOr19_OUT0

WideOr20_OUT0

sdata[4]_OUT0

WideOr21_OUT0

WideOr22_OUT0

WideOr23_OUT0

bit_shift_data_OUT0

sdata[5]_OUT0

mux:l_shift_mux_c

sdata[6]_OUT0

WideOr5_OUT0

sdata[7]_OUT0

WideOr6_OUT0

WideOr7_OUT0

WideOr8_OUT0

sdata[8]_OUT0

xor_data~47_OUT0

xor_data~46_OUT0

xor_data~45_OUT0

xor_data~44_OUT0

xor_data~43_OUT0

xor_data~42_OUT0

xor_data~41_OUT0

xor_data~40_OUT0

xor_data~39_OUT0

xor_data~38_OUT0

xor_data~37_OUT0

xor_data~36_OUT0

xor_data~35_OUT0

xor_data~34_OUT0

xor_data~33_OUT0

xor_data~32_OUT0

xor_data~31_OUT0

xor_data~30_OUT0

xor_data~29_OUT0

xor_data~28_OUT0

xor_data~27_OUT0

xor_data~26_OUT0

xor_data~25_OUT0

xor_data~24_OUT0

WideOr9_OUT0

WideOr10_OUT0

WideOr11_OUT0

Decoder4_OUT

Decoder1_OUT

sout[5][2..0]

clk

sdata[2][2..0]

sout[6][2..0]

sdata[3][2..0]

temp[2][2..0]

sout[7][2..0]

sdata[4][2..0]

temp[3][2..0]

ldata_inrot[23..0]

bshift_data[0][7..0]temp[1][2..0]

sout[8][2..0]

bshift_data[1][7..0]bdata[1][7..0]

bshift_data[2][7..0] bit_shift_data[23..0]

sout[1][2..0]

sdata[5][2..0]

temp[8][2..0]

temp[4][2..0]

bdata[2][7..0]

sdata[1][2..0]

bdata[0][7..0]

ldata_rot[23..0]

data_left[23..0]

mux:l_shift_mux

encrypt

mux:l_in_shift_mux

en_data_l[23..0]

sdata[6][2..0]

temp[5][2..0]

sout[2][2..0]

sdata[7][2..0]

temp[6][2..0]

sout[3][2..0]

sdata[8][2..0]

temp[7][2..0]

xor_data[23..0]

sbox_out[23..0]

sout[4][2..0]

WideOr12

WideOr13

WideOr14

Mod1

24' h000100 --

data_right[23..0]

en_data_r[23..0]

Add0

Mod0

24' h000100 --

key[23..0]

WideOr0

Decoder0

WideOr1

WideOr2

Decoder1 WideOr3

WideOr4

Fig.9 Scalable encryption algorithm Decryption

Fig.10 Analysis and Synthesis

V. Conclusion

This paper presents parallel-prefix-based adder

elements that provide higher tradeoff in area and delay

are therefore exhibited to design reverse converters. a

technique is represented to style reverse converters

depending on numerous styles of prefix adders. This

brief presents a technique which will be applied to most

of the present reverse converter architectures to enhance

their Performance and adjust the cost/performance to the

application specifications. he use of modular and regular

parallel-prefix adders projected during this brief in

reverse converters highly decrease the delay at the

expense of significantly additional power AND circuit

International Journal of advancement in electronics and computer engineering (IJAECE)

Volume 06, Issue 5, June 2017, pp.514-518, ISSN: 2274-1412

 Copyright © 2012: IJAECE (www.ijaece.com)

[518]

area, whereas the projected prefix-based adder elements

permits one to achieve appropriate tradeoffs between

speed and price by selecting the right adders for the

elements of the circuits which will benefit from them the

most.

References

[1] A.A. E. Zarandi, A. S. Molahosseini, M. Hosseinzadeh, S.

Sorouri, S. Antão, and Leonel Sousa “Reverse Converter
Design via Parallel-Prefix Adders: Novel Components,

Methodology, and Implementations” IEEE Tra. on Very Large
Slale Int. Sys. Pp. 1-5 2015.

[2] Somayeh Timarchi, Mahmood Fazlali1, and Sorin D.Cotofana,
“Unified Addition Structure for Moduli Set {2n-1, 2n,2n+1}

Based on a Novel RNS Representation” IEEE pp.247-252 2010.

[3] Ghassem Jaberipur “On Building General Modular Adders from

Standard Binary Arithmetic Components” The CSI Journal on

Computer Science and Engineering Vol. 4, No. 2&4, Pp. 10-16,
2006.

[4] Saeid Banhanfar and Nadali Zarei “Reverse Converter for the
Moduli Set {2n-1, 2n, 2n+1} Base on Grouping Number”, IJCSI

International Journal of Computer Science Issues, Vol. 10, Issue

6, No 1, November 2013.

[5] Chan Hua Vun, Senior Member, IEEE, Annamalai Benjamin

Premkumar, Senior Member, IEEE, and Wei Zhang, Member,
IEEE, “A New RNS based DA Approach for Inner Product

Computation”, IEEE Trans.Circuits And Systems—I: Regular

Papers, vol. 60, no. 8, AugusT 2013.

[6] A. Omondi and B. Premkumar, Residue Number Systems: Theory

and Implementations. London, U.K.: Imperial College Press,
2007.

[7] Rajalingam, M. Kuttimani, A. Muthumanicckam, and R.
Sornalatha. "Design and Implementation of RNS Reverse

Converter using Parallel Prefix Adders." International Journal of

Computer Applications 117.6 (2015).

[8] Devi, J. Brindha, and G. Rohinipriya. "Design of Reverse

Converter Using Parallel Prefix Adders and CRT." International
Journal of Engineering and Applied Sciences (IJEAS) ISSN:

2394-3661, Volume-2, Issue-3, March 2015.

[9] Vinod Kumar PS, Mr. Sudhakar Reddy N “AN EFFICIENT

REVERSE CONVERTER DESIGN VIA PARALLEL PREFIX

ADDER”, IJESRT August, 2015.

[10] Yezerla, Sudheer Kumar, and B. Rajendra Naik. "Design and

Estimation of delay, power and area for Parallel prefix adders."
Engineering and Computational Sciences (RAECS), 2014 Recent

Advances in. IEEE, 2014.

[11] B. Parhami, Computer Arithmetic: Algorithms and Hardware

Designs,2nd ed., New York, NY, USA: Oxford Univ. Press, 2010.

[12] J.Chen and J. Hu, “Energy-efficient digital signal processing via

voltageover scaling-based residue number system,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 7, pp. 1322–

1332, Jul. 2013.

[13] C. H. Vun, A. B. Premkumar, and W. Zhang, “A new RNS based

DA approach for inner product computation,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2139–2152, Aug.
2013.

[14] S. Antão and L. Sousa, “The CRNS framework and its application

to programmable and reconfigurable cryptography,” ACM Trans.

Archit. Code Optim., vol. 9, no. 4, p. 33, Jan. 2013.

[15] A. S. Molahosseini, S. Sorouri, and A. A. E
arandi,“Researchchallenges in next-generation residue number

system architectures,” in Proc. IEEE Int. Conf. Comput. Sci.

Educ., Jul. 2012, pp. 1658–1661.

