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Abstract—Present work describes a promising method in image fusion remote sensing 

applications. Due to intrinsic properties of neural networks (DNN) in image reconstruction, 

a novel Image Fusion Technique presents based on multi resolution analysis (MRA) 

framework. First, a low resolution Panchromatic (LR Pan) image is constructed using its 

high resolution (HR) version. Then, the relationship between LR/HR Pan images are used 

to reconstruct the HR Multispectral (MS) image utilizing the LR MS. For our work, two 

datasets are considered and for each of them, the effect of several parameters such as 

window size, overlapping percentage and number of training samples on spectral distortion 

are considered. After training DNN, the LR MS image is given to the trained network as 

input to obtain MS image with better spatial details and finally the fused image obtains 

using MRA framework. Comparison with state of art methods, the proposed method has 

better results from objective and visual perspectives. 
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I. INTRODUCTION 

Remote sensing is a field of study whose goals are related 
to measure the changes of the earth for different applications 
such as image fusion [1-2], land cover segmentation [3-4]. 
There are many satellites which provide images for mentioned 
applications. One of the main interests of many researchers and 
hot topics, is pansharpening [5]. Due to bandwidth limitation, 
the satellites cannot provide an image with both high spatial 
and spectral resolutions, but they can simultaneously collect 
two types of images with two different sensors; one of them 
has high spatial resolution which is called Pan image and the 
other one has high spectral resolution under name MS image. 
Pansharpening aims to fuse LR MS image with HR Pan image 
to obtain an image which inherits both information [6]. Image 
fusion is also used in medical applications [7-8]. 

Image Fusion Techniques basically can be classified into 
two main groups [9]: Components substitution (CS) methods 
and multi resolution analysis (MRA) methods. In both CS and 
MRA approaches, a detail map should be extracted and then 
should be injected to the resampled MS image. These methods 
have similar frameworks except in the extraction of detail 
maps. In CS method, the detail map is obtained by the 
difference between the Pan image and the linear combination 
of resampled MS bands. On the other hand, in MRA methods 
the detail map is computed using the difference between Pan 
image and its low resolution version through  decomposition 
of Pan image using wavelet transforms, Laplacian pyramids 
and some other techniques. The main problem in the 
pansharpening approaches is the reduction of spatial 
distortions while preserving spectral information. The CS 
methods   such as   intensity-hue-saturation (IHS) [10], 
principle component analysis (PCA) [11], and Gram-Schmidt  

 

 

 

(GS) [12], have good spatial information but suffer from 
spectral distortions. Apart from CS methods, MRA methods 
such as indusion [13], ‘à trous’ wavelet transform (ATWT) [14] 
and Laplacian pyramid (LP) [15], have good spectral details 
while suffer from spatial distortions. 

In the present work, deep neural networks (DNN) are 
employed to find the relationship between original Pan image 
patches and its resampled version. After training the DNN, the 
resampled MS image patches are given to the network as input. 
In our proposed scheme, the effect of several parameters such 
as window size, overlapping percentage and number of training 
samples in the output of trained network is considered for 
analyzing spectral distortion. It is shown that for different 
datasets, these parameters can be different. So, the best results 
for each one are reported. It should be mentioned that training 
of DNN have a huge computational cost. We perform our 
proposed method using graphics processing unit (GPU) for 
speed up the run time. The DNN has two step learning [16]: 
pretraining and fine-tuning. The pretraining stage can be done 
using restricted Boltzmann machines (RBM) [17] and sparse 
denoising autoencoders (SDA) [18]. In the fine-tuning stage, 
the whole network trains again using backpropagation 
algorithm in a supervised manner to find optimal weights of the 
network [19]. 

The rest of the paper is organized as follows: Section II 
describes the basic mathematical modeling and tools for the 
proposed method, consisting proposed scheme and basic 
concepts of DNN. Effect of several parameters such as window 
size, overlapping percentage and number of training samples 
on spectral distortion for two datasets are provided in Section 
III. In section IV the fusion process of the proposed method is 
compared with state of art methods objectively and visually. 
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Finally, conclusion is provided in section V. 

 

II. MATHEMATICAL MODELING AND TOOLS 

 

A. Proposed Pansharpening Framework 

Basic framework of MRA approaches as described in many 
previous works is as follows [10]: 

MS
H 
 MS

L 
 g (P  P

LR 
) (1) 

where MS
H 

is the fused product corresponds to kth band, 

MSL is the kth band of resampled MS image, gk is the 

adjusting gain of the kth detail map, P is the original Pan image 

and P
LR 

is a low resolution version of Pan image. In the recent 

years, there has been proposed several works on computing 

P
LR 

and g to obtain better fusion results. 

In this paper, P
LR 

is computed using the resampled version 

of Pan image. First, the Pan image is downsampled by factor N 
and then upsampled with inverse of N. By utilizing the 

relationship between P
LR 

and Pan image, a neural network is 

trained. It is assumed that relationship between the P
LR 

and Pan image is the similar to the relationship between 

 

 

Fig. 1. A simple scheme of an autoencoder. 

The latter can only be done by capturing the statistical 
dependencies between the inputs [20]. 

Combining sparse coding and denoising autoencoder first 
proposed by Xie et al. [18] for image denoising and blind 
inpainting. The idea behind the sparse denoising is to better 
feature extraction using these constraints. 

In this paper, main features of the low resolution Pan are 
extracted and

i  
tr

N
y to reco

i 
ns

N
truct it using neural 

networks.{x } and{z } are considered as the patches of 
resampled MS image and its high resolution version. From this p i1 p i1 

assumption, the high resolution version of resampled MS 
image can be directly computed using trained network, which 

is called SMSk . So, we modify the equation (1) as follows: 

LR and reconstructed LR Pan image respectively. To obtain 

the T  {W, W ', b, b '}, n eura l networks trained using the 

following objective function 

MS
H 
 SMS    g (P  P

LR 
) (2)  i i N 

 1 N 2 

 

The final product of the proposed method can be achieved 
using Eq. 2.  

 2 


i1 2   


N
  i

p p 

   ̂ 

 

B. Sparse Coding and Denoising Autoencoders 
KL( || ) 

 W W ' 
An autoencoder is a type of neural networks with 

backpropagation algorithm for unsupervised learning. Thegoal 
of using autoencoder is trying to reconstruct the input. Fig. 1 

where  and  are adjusting parameters, the second term is 

weight  decaying  term,  and  the  third  term  KL( || ̂) is  the 

sparsity term, which is defined as 
shows an autoencoder. As shown in Fig. 1, an autoencoder 

takes an input x[0,1] and first maps it (with an encoder) to a KL( || ̂)   log  (1 ) log 
1 

(6) 

hidden representation y[0,1]as the following equation 
y  s(Wx  b) (3) 

1 N 

̂ 1 ̂ 

and  ̂    s(x i ) is  the  average  activation  of  hidden  layer. 

where s(x) is sigmoid activation function. The coded data (y), 

is then mapped back (with a decoder) into a reconstruction zof 

the same shape as x using the following equation 

N i1 
p
 

After training the first autoencoder, the second autoencoder can 
be trained using the features which are extracted from the first 
autoencoder as the input. 

z  s(W ' y  b ') (4) 
After training each autoencoder, they can be stacked to 

with this optionally assumption that W  W ' . The hidden 
representation tries to extract basic features of the input data. 
The denoising autoencoder is a stochastic type of the 
autoencoder. In fact, a denoising autoencoder has two main 

each other as a series of autoencoders and trained again with 
the initial weights obtained from the previous pre-training. The 
whole network is then trained again for global fine-tuning to 
minimize the following function 

tasks: try to encode the input (the input are coded stochastically 
using certain distribution), and try to undo the effect of a F u i , zi 

N

 ; T 1 
N 

  u i   ẑ(x i )  
 
 W 2 

(7) 

corruption process stochastically applied to the input of the 
autoencoder. 

2 p p i1 p p j 

i1 j1 

1 
(5) 



2 
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{u } where 
i N 

p i1 
is HR Pan image patches, M is number of TABLE I 

Effect of window size on the spectral distortion 
stacked sparse denoising autoencoder and Wj show the weights 

corresponds to jth layer in the neural networks. 

In both pre-training and fine-tuning stages, scaled conjugate 
gradient (SCG) is used for optimizing the objective functions 
(5) and (7). 

 

III. EXPERIMENT ON SEVERAL PARAMETERS FORQUICKBIRD 

AND WORLDVIEW-3 DATASETS 

In this section, the effect of several parameters such as 
window size, overlapping percentage and number of training 
samples is investigated for QuickBird and WorldView-3 
datasets as shown in Fig. 2. For QuickBird dataset, Pan and MS 
images have 0.7-m and 2.8-m resolutions respectively. For 
WorldView-3 satellite, Pan and MS images have 0.31-m and 
1.24-m resolutions respectively. For conducting our 
experiment, the size of Pan image for both datasets is 
1024×1024 pixels and the corresponding MS images have 
256×256 pixels. Wald’s protocol is followed in our proposed 
fusion process. For all experiments, we use the mean squares 
error (MSE) as a metric for describing the spectral distortion. 
The MSE of test image and its result are averaged over 5 times 
computation and are reported in the followingtables. 

 

A. Effect of Window Size on Datasets 

The effect of window size on the value of averaged MSE 
are analyzed in this part. For our experiment we consider the 

 

(a) (b) 
 

  

(c) (d) 

 
Fig. 2. Datasets. (a) Original MS image (QuickBird), (b) Original 

Pan image (QuickBird) (c) Original MS image (WorldView-3) (d) 
Original Pan image (WorldView-3). 

 

Window 

size 

No. of 

training 

samples 

MSE 

(Training) 

MSE 

(1st 

band) 

MSE 

(2nd 

band) 

MSE 

(3rd 

band) 

3×3 32768 0.0101 0.2823 0.3113 0.2573 

3×3 49152 0.0101 0.2847 0.3121 0.2596 

5×5 14450 0.0103 0.2241 0.1906 0.2190 

5×5 21675 0.0098 0.1902 0.1739 0.1853 

7×7 8192 0.0095 0.2177 0.2052 0.1953 

7×7 12288 0.0094 0.2304 0.1989 0.2022 

9×9 5202 0.0097 0.2181 0.2183 0.1986 

9×9 7803 0.0093 0.2286 0.1948 0.1607 

 
TABLE II 

Effect of overlapping percentage on the spectral distortion 
 

Window 

size 

Overlapping MSE 

(Training) 

MSE 

(1st 

band) 

MSE 

(2nd 

band) 

MSE 

(3rd 

band) 

3×3 1 (40%) 0.0101 0.2823 0.3113 0.2573 

3×3 2 (50%) 0.0099 0.2649 0.2937 0.2277 

5×5 2 (40%) 0.0103 0.2241 0.1906 0.2190 

5×5 3 (50%) 0.0103 0.2341 0.2563 0.1978 

5×5 4 (70%) 0.0099 0.3815 0.3522 0.3216 

7×7 3 (40%) 0.0095 0.2177 0.2052 0.1953 

7×7 4 (50%) 0.0097 0.2238 0.2159 0.2196 

7×7 5 (70%) 0.0097 0.1513 0.1522 0.1205 

9×9 4 (40%) 0.0097 0.2181 0.2183 0.1986 

9×9 5 (50%) 0.0093 0.2793 0.2337 0.2133 

9×9 6 (70%) 0.0094 0.1990 0.1800 0.1818 

 

TABLE III 

Effect of training samples on the spectral distortion 
 

Window 

size 

No. of 

Samples 

MSE 

(Training) 

MSE 

(1st 

band) 

MSE 

(2nd 

band) 

MSE 

(3rd 

band) 

3×3 16384 0.0101 0.2796 0.3071 0.2531 

3×3 32768 0.0101 0.2823 0.3113 0.2573 

3×3 49152 0.0101 0.2847 0.3121 0.2596 

3×3 65536 0.0101 0.2832 0.3104 0.2574 

3×3 81920 0.0101 0.2858 0.3148 0.2611 

5×5 7225 0.0105 0.2789 0.2999 0.2485 

5×5 14450 0.0103 0.2241 0.1906 0.2190 

5×5 21675 0.0098 0.1902 0.1739 0.1853 

5×5 28900 0.0096 0.1890 0.1671 0.1772 

5×5 36125 0.0103 0.3206 0.3512 0.3035 

7×7 4096 0.0095 0.2211 0.2042 0.2023 

7×7 8192 0.0095 0.2177 0.2052 0.1953 

7×7 12288 0.0094 0.2304 0.1989 0.2022 

7×7 16384 0.0092 0.2184 0.1972 0.1572 

7×7 20480 0.0092 0.2451 0.2161 0.2217 

9×9 2601 0.0095 0.1975 0.1775 0.1625 

9×9 5202 0.0097 0.2181 0.2183 0.1986 

9×9 7803 0.0093 0.2286 0.1948 0.1607 

9×9 10404 0.0096 0.2077 0.1951 0.1781 

9×9 13005 0.0092 0.2507 0.2092 0.1884 

 
window sizes 3, 5, 7 and 9. In this stage, each sample patch is 
trained twice randomly. So, for all the window sizes the 
number of training samples are fixed and equals to 2, 3 times 
of the generating patches. Another notable thing is the 
overlapping percentage. The value of overlapping percentage is
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also fixed and equals to 40% for each window size. Table I & 
IV show the results of the changing window size. As clear, the 
window size 5×5 and 7×7 has the less spectral distortions than 
the others for QuickBird and WorldView-3 respectively. The 
window size has a direct relationship with the sizes and the 
amount of details in the image. For crowded image, like urban 
and land-cover areas the smaller window sizes have better 
results. The best value of the MSE is reported in bold form. 

 

B. Effect of Overlapping Percentage on Datasets 

In this sub-section, the effect of overlapping percentage on 
the datasets is evaluated. For this purpose, three different 
overlapping percentages of 40%, 50% and 70% are considered. 
The number of training samples is equal to 2 times of 
generating patches for each window size. Table II & V show 
the results of mentioned experiment for QuickBird and 
WorldView-3 respectively. As reported, by increasing the 
value of overlapping percentage, spectral distortions become 
less. There is another key point which should be mentioned. 
Larger value of overlapping percentage may cause overfitting 
such what is happened in the window size 5×5 with 70% 
overlapping in Table II. 

C. Effect of Training Samples on Datasets 

At the final experiment on datasets, the effect of number of 
training samples in the value of MSEs is investigated. 
Overlapping percentage is set to 40%. Table III & VII show the 
results of changing training samples. For example, in 
WorldView-3 results as in Table VI the window size 5×5 with 
3 times of generating patches has less spectral distortion. The 
effect of training samples show that the spectral distortion 
become less until overfitting occurs. We consider the best 
parameters for the fusion process. 

IV. F 

TABLE IV 

Effect of window size on the spectral distortion 
 

Window 

size 

No. of 

training 

samples 

MSE 

(Training) 

MSE 

(1st 

band) 

MSE 

(2nd 

band) 

MSE 

(3rd 

band) 

3×3 32768 0.0135 0.4627 0.3911 0.4056 

3×3 49152 0.0135 0.4659 0.3940 0.4092 

5×5 14450 0.0135 0.4625 0.3944 0.3831 

5×5 21675 0.0137 0.4273 0.3561 0.3436 

7×7 8192 0.0129 0.5627 0.4752 0.4643 

7×7 12288 0.0130 0.5437 0.4565 0.4433 

9×9 5202 0.0148 0.5516 0.4721 0.4607 

9×9 7803 0.0131 0.6019 0.5116 0.5021 

TABLE V 

Effect of overlapping percentage on the spectral distortion 
 

Window 

size 

Overlapping MSE 

(Training) 

MSE 

(1st 

band) 

MSE 

(2nd 

band) 

MSE 

(3rd 

band) 

3×3 1 (40%) 0.0135 0.4627 0.3911 0.4056 

3×3 2 (50%) 0.0136 0.5470 0.4715 0.4911 

5×5 2 (40%) 0.0135 0.4625 0.3944 0.3831 

5×5 3 (50%) 0.0135 0.5169 0.4379 0.4257 

5×5 4 (70%) 0.0135 0.4899 0.4133 0.3989 

7×7 3 (40%) 0.0129 0.5627 0.4752 0.4643 

7×7 4 (50%) 0.0135 0.5117 0.4314 0.4218 

7×7 5 (70%) 0.0137 0.5623 0.4782 0.4670 

9×9 4 (40%) 0.0148 0.5516 0.4721 0.4607 

9×9 5 (50%) 0.0139 0.6439 0.5472 0.5440 

9×9 6 (70%) 0.0133 0.5323 0.4508 0.4414 

TABLE VI 

Effect of training samples on the spectral distortion 

USION RESULTS 

In this section, the results of previous section are employed 
in the fusion process. The chosen initial settings for the 
QuickBird and WorldView-3 datasets are reported in Table VII 
and Table VIII respectively. The proposed method compares 
with state of art methods like GS [12], PCA [11], IHS [10], and 
indusion [13] objectively and visually. There are several 
spectral and spatial metrics to objectively assess the fused 
products. In this paper, correlation coefficient (CC) [21], error 
relative global adimensionnelle de synthese (ERGAS) [22], 
spectral angle mapper (SAM) [23], relative average spectral 
error (RASE) [24], structural similarity (SSIM) [25] and 
universal image quality index (UIQI) [26] are used for 
comparison. The results of pansharpening process for 
QuickBird datasets are reported in Fig. 3 and the corresponding 
objective quality assessment for the implemented methods are 
provided in Table IX. For visual assessment comparison, the 
proposed method can better preserve the reference image 
colors such as the white regions in the right corner. The spatial 
details of the Pan image are also better injected to the proposed 
pansharpened image. From objective point of view, the quality 
metrics of the proposed method can have better results 
relatively in comparison with state of art methods. For the 
WorldView-3 dataset, the results of fusion results are provided 
in Fig. 4 and the objective assessment of the pansharpened 
images are reported in Table X. For the WorldView-3 dataset, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
the colors of the ceilings and grass regions in the proposed 
method are more similar to reference image than the other 
methods. The edges and spatial details of the Pan image are 
better added to the proposed method. The comparison of 
quality metrics for WorldView-3 dataset shows that the 
proposed method has better results than other methods. 

Window 

size 

No. of 

Samples 

MSE 

(Training) 

MSE 

(1st 

band) 

MSE 

(2nd 

band) 

MSE 

(3rd 

band) 

3×3 16384 0.0135 0.4670 0.3944 0.4099 

3×3 32768 0.0135 0.4627 0.3911 0.4056 

3×3 49152 0.0135 0.4659 0.3940 0.4092 

3×3 65536 0.0135 0.4535 0.3824 0.3926 

3×3 81920 0.0135 0.4814 0.4086 0.4258 

5×5 7225 0.0135 0.5073 0.4287 0.4369 

5×5 14450 0.0135 0.4625 0.3944 0.3831 

5×5 21675 0.0137 0.4273 0.3561 0.3436 

5×5 28900 0.0137 0.4449 0.3700 0.3578 

5×5 36125 0.0136 0.4537 0.3847 0.3796 

7×7 4096 0.0130 0.5781 0.4861 0.4692 

7×7 8192 0.0129 0.5627 0.4752 0.4643 

7×7 12288 0.0130 0.5437 0.4565 0.4433 

7×7 16384 0.0129 0.6167 0.5175 0.4994 

7×7 20480 0.0130 0.5279 0.4592 0.4487 

9×9 2601 0.0133 0.5694 0.4848 0.4726 

9×9 5202 0.0148 0.5516 0.4721 0.4607 

9×9 7803 0.0131 0.6019 0.5116 0.5021 

9×9 10404 0.0132 0.5817 0.4967 0.4849 

9×9 13005 0.0136 0.5387 0.4553 0.4487 
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Fig. 3. Fusion results for QuickBird Dataset. (a) Original MS 
image (b) Original Pan image (c) Resampled MS image (d) GS 
method (e) PCA method (f) IHS method (g) Indusion method (h) 
Proposed method. 

 

Fig. 4. Fusion results for WorldView-3 Dataset. (a) Original MS 
image (b) Original Pan image (c) Resampled MS image (d) GS 
method (e) PCA method (f) IHS method (g) Indusion method (h) 
Proposed method. 
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TABLE VII 

Initial settings for the QuickBird dataset 
Window size 7×7 

Overlapping percentage 70% 

Number of training samples 31752 

 
TABLE VIII 

Initial settings for the WorldView-3 dataset 
Window size 5×5 

Overlapping percentage 40% 

Number of training samples 21765 

 

TABLE IX 

Fusion results for the QuickBird satellite 
 CC RASE ERGAS SAM SSIM UIQI 

GS 0.606 47.535 11.933 11.652 0.416 0.615 

PCA 0.610 47.239 11.857 11.477 0.417 0.618 

IHS 0.862 27.929 7.053 5.194 0.596 0.853 
Indusion 0.854 29.983 7.554 7.526 0.513 0.858 

DNN 0.885 26.408 7.043 6.542 0.579 0.888 

 

TABLE X 

Fusion results for the WorldView-3 satellite 
 CC RASE ERGAS SAM SSIM UIQI 

GS 0.927 37.173 9.377 6.427 0.775 0.897 

PCA 0.927 37.180 9.378 6.429 0.775 0.897 

IHS 0.940 36.965 9.280 5.515 0.748 0.893 
Indusion 0.943 30.490 7.710 10.840 0.787 0.940 

DNN 0.961 27.996 6.720 6.168 0.815 0.946 

 
V. CONCLUSION 

In this paper, a novel Image Fusion Technique is proposed 
using multi resolution analysis framework and neural 
networks. After obtaining the relationship between Pan image 
and its low resolution version using DNN, the high resolution 
version of resampled image can directly compute by trained 
network. In our future work, we focus on optimizing the 
injected detail maps for better pansharpening. 
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