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Abstract – The advent of millimeter-wave (mmWave) massive Multiple Input Multiple Output (MIMO) 

technology has introduced unprecedented challenges and opportunities in wireless communication systems. 

The effective estimation of mmWave channels plays a pivotal role in ensuring reliable and high-capacity data 

transmission. This thesis addresses the critical task of beamspace channel estimation in mmWave massive 

MIMO systems using a hybrid approach that combines Kalman filtering, subspace pursuit, and orthogonal 

matching pursuit (OMP) techniques. 

The mmWave frequency band offers a wide spectrum for high data rates, but it is characterized by severe 

path loss and susceptibility to blockage due to its short wavelength. To harness the potential of mmWave 

communication, beamforming and beamsteering techniques are employed, necessitating accurate beamspace 

channel estimation. 

The proposed hybrid approach leverages the strengths of Kalman filtering, a recursive estimation algorithm, 

to provide dynamic tracking of channel variations. By incorporating Kalman filtering into the estimation 

process, the system adapts to changes in the environment, offering robustness in time-varying scenarios. 

Keywords: Millimeter-Wave (Mmwave), Massive MIMO, Beamspace Channel Estimation, 

Approximate Message Passing (AMP), Deep Learning. 

 

 

I. INTRODUCTION  

With an ever-increasing number of mobile phone devices 

and services, the next-generation 5G wireless 

communication is expected to deliver a high data rate. 

Evolving wireless applications such as IoT, M2M, D2D, 

and augmented reality enforces the demand on 5G 

communication to provide 10x times better performance 

than 4G LTE infrastructure. This has been illustrated in the 

white paper DotEcon Ltd & Axon Partners (2018). This 

growth demand study is forecasted in the Ericson report. It 

predicted global mobile data traffic to reach 38 Exabytes 

per month by the end of 2019 and increase to 160 

Exabytes per month in 2025. By 2025, it predicts that 5G 

networks carry 45 percent of total mobile data traffic. 

Consequently, the millimeter-wave spectrum 30 to 300 

GHz has been considered for 5G wireless technologies to 

overcome the bandwidth scarcity (Ge et al., (2016); Wang 

et al., (2015); Zeng et al., (2016); Zheng et al., (2015)). 

With a smaller wavelength, the antenna's physical size is 

minimal and can deploy large-scale antenna arrays for 

Millimeter-wave wireless communication systems. 

Multi-user (MU) massive multiple-input multiple-output 

(MIMO) is a key technology to meet the demands in the 

next (fifth) generation of wireless technologies (5G) [2–4]. 

In MU-MIMO, a base station (BS) with multiple antennas 

serves multiple users on the same time-frequency resource. 

In massive MIMO systems, the number of antennas at the 

BS is assumed to be very large, i.e., in the order of 

hundreds of antennas [2, 4]. Under favorable propagation 

conditions 1 , as the number of antennas becomes 

asymptotically large, different random channel vectors 

between the BS and different user equipments (UEs) 

become orthogonal due to the law of large numbers [4]. 

Using such an asymptotic orthogonality between different 

channel vectors, the massive MIMO systems have shown 

several advantages compared to the systems with small 

number of antennas. In what follows, we briefly explain a 

few advantages gained from using a massive number of 

antennas. 

In MU MIMO systems the sum-rate is scaled by the 

smaller of two number of BS antennas and the number of 

users. Since both of these numbers can become very large 

in massive MIMO systems, the sum-rate can increase. On 

the other hand, for fixed number of UEs, by increasing the 

number of antennas at the BS, the effect of intra-cell 

interference and uncorrelated noise can be eliminated 

using a simple match filtering [2]. The increase in the 

number of BS antennas provides larger array gains. This is 

mainly due to receiving more samples in spatial domain. 

Such an increase in spatial domain can provide more 

degrees of freedom for signal processing, and therefore, 

enhances the signal-to-noise ratio (SNR). 

Channel hardening is another benefit provided by the 

massiveness in the number of antennas. With channel 

hardening, the effect of small-scale fading disappears. As a 

result, resource allocations can be performed on a slower 

time scale, while precoders and detectors become more 

stable [5]. In terms of the power consumption, using 

maximum ratio combining (MRC) at the BS, the uplink 

transmit power is inversely proportional to the square root 

of the number of BS antennas [6]. All these benefits 
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motivate the use of MU massive MIMO in 5G wireless 

networks. 

Achieving the promised performance of massive MIMO 

systems requires that an accurate channel state information 

(CSI) to be available. Due to the large number of antennas 

in massive MIMO systems, obtaining the uplink and 

downlink CSI is challenging. In the next subsections, we 

elaborate on these challenges in channel estimation for 

different implementations of massive MIMO systems. 

 

     II .  HYBRID MASSIVE MIMO SYSTEM 
 

Fully digital architecture equipped with NBS 

transmit and NMS receive antenna elements. The 

antenna elements will have an equal number of RF 

chains, and the digital baseband directly accesses 

the RF chain of the antenna elements to process the 

data. This implementation is expensive and not 

suited for large scale antenna array. However, it 

promises accurate channel state information. For 

massive MIMO millimeter-wave communication, 

hybrid architecture studied in Zhang et al., (2015) 

brings significant interest due to its reduced 

number of RF chains, low power consumption, and 

computational overhead distribution equally digital 

baseband and analog RF beamforming. 

A hybrid architecture is divided into two types. i) 

fully connected and ii) sub-array or partially 

connected hybrid beamforming. Here we utilize 

fully connected hybrid beamforming architecture. 

It is further classified as a) phaseshift based b) 

switch based analog beamforming shown in Figure 

1(a) and Figure 1(b), respectively. With different 

hybrid beamforming architectures, the digital 

baseband beamformer does not directly access 

individual antenna elements make it difficult to 

estimate the channel state information with the 

reduced number of RF chains. 

Figure 1(a) shows the fully-connected hybrid 

architecture with a phaseshifting network-based 

analog beamforming network. Each NBS antenna 

elements are connected to finite resolution phase 

shifters NP which are connected to NRF BS chains 

which result in NP.NRF BS phase-shifting 

network. Its benefits include sweeping the beam to 

any angle of arrival or departure with high 

processing capability but with more complexity. 

Other variants of hybrid architecture include phase 

shifter-based sub-array hybrid architecture. 

 
  

Figure 1.(a) Phase shifter based fully connected hybrid 

beamforming 

 
  

Figure 1.(b) Switched based fully connected hybrid 

beamforminggrid 

 

III. METHOD 

The proposed method for beamspace channel estimation in 

millimeter-wave (mmWave) massive Multiple Input 

Multiple Output (MIMO) systems employs a hybrid 

approach that integrates Kalman filtering, subspace 

pursuit, and orthogonal matching pursuit (OMP) 

techniques. This method is designed to address the unique 

challenges of mmWave communication, including channel 

variation, sparsity, and high dimensionality, to ensure 

accurate and adaptive channel estimation. 

Kalman Filtering for Dynamic Tracking: 

The use of Kalman filtering offers dynamic channel 

tracking capabilities, allowing the system to adapt to time-

varying channel conditions. 



International Journal of Advancement in Electronics and Computer Engineering ( IJAECE) 

Volume 12, Issue 9, September. 2023, pp.210-215, ISSN 2278 -1412 

Copyright © 2012: IJAECE (www.ijaece.com) 

 

 

[38] 

 

Kalman filtering is employed to model and estimate the 

evolving channel state, providing a recursive and real-time 

update mechanism for channel tracking. 

The use of Kalman filtering in the context of channel 

estimation in Millimeter-Wave Massive MIMO (Multiple-

Input, Multiple-Output) systems is instrumental in 

addressing the dynamic nature of mmWave channels. This 

approach offers dynamic channel tracking capabilities, 

enabling the system to adapt to rapidly changing channel 

conditions. To understand how Kalman filtering achieves 

this, it's essential to delve into the principles and 

mechanisms underlying this technique. 

The Kalman filter is commonly used in signal processing 

and estimation problems, including channel state tracking. 

Here's a simplified representation of the Kalman filter 

equations for dynamic channel state tracking: 

1. Prediction Step: 

• Predicted state estimate:  

• x^k−=Ax^k−1+Buk 

• Predicted error covariance:  

• Pk−=APk−1AT+Q 

2. Update Step (Corrective Step): 

• Kalman gain:  

• Kk=Pk−HT(HPk−HT+R)−1 

• Corrected state estimate:  

• x^k=x^k−+Kk(zk−Hx^k−) 

• Corrected error covariance:  

• Pk=(I−KkH)Pk− 

Where: 

• x^k
− is the predicted state estimate at time step k. 

• A is the state transition matrix. 

• B is the control input matrix. 

• uk is the control input at time step k. 

• Pk
− is the predicted error covariance at time step k. 

• Q is the process noise covariance. 

• Kk is the Kalman gain at time step k. 

• zk is the measurement at time step k. 

• H is the measurement matrix. 

• R is the measurement noise covariance. 

• x^k is the corrected state estimate at time step k. 

• Pk is the corrected error covariance at time step k. 

These equations describe the Kalman filter's prediction and 

update steps for dynamically tracking the channel state and 

continuously updating the state estimate in real-time. The 

filter combines predictions based on the system model 

with measurements to refine its estimates as new data 

becomes available. 

Orthogonal Matching Pursuit (OMP) for Dimensionality 

Reduction: 

OMP is introduced to iteratively select the most promising 

beamspace components from the potentially high-

dimensional channel space. 

By iteratively narrowing down the focus to the most 

relevant channel components, OMP effectively reduces the 

dimensionality of the estimation problem while 

maintaining estimation accuracy. 

Orthogonal Matching Pursuit (OMP) is an iterative 

algorithm that plays a crucial role in selecting and 

recovering the most significant beamspace components in 

a high-dimensional channel space. It is commonly used in 

various applications, including channel estimation in 

millimeter-wave massive MIMO systems, to reduce the 

dimensionality of the problem while ensuring accurate 

estimation.  

Orthogonal Matching Pursuit (OMP) algorithm used for 

selecting and recovering the most significant beamspace 

components in a high-dimensional channel space: 

Let's define the following variables: 

D: The dictionary matrix containing beams (columns) in 

the channel space. 

y: The measured signal vector. 

x: The sparse coefficient vector representing the selected 

beams. 

k: The desired sparsity level, i.e., the number of beams to 

select. 

The goal is to find the sparse coefficient vector x. 

The OMP algorithm can be mathematically represented as: 

Initialization: 

Initialize the residual vector: r₀ = y 

Initialize the set of selected indices: Ω₀ = {} (empty set) 

Iterative Selection (Repeat until the termination condition 

is met): 

For iteration t = 1, 2, 3, ... 

a. Beam Selection: 

Find the index that maximizes the correlation with the 

current residual: 

it = arg max |〈DTrt₋₁, dj)| 

where dj is the j-th column of the dictionary matrix D. 

b. Set Update: 

Update the set of selected indices: Ωt = Ωt₋₁ ∪ {it} 

c. Coefficient Update: 

Solve the least-squares problem for the selected beams: 

xt = arg min ‖y - Dx‖₂, s.t. ‖xt‖₀ ≤ k 

Where ‖xt‖₀ represents the L₀ norm of the coefficient 

vector, ensuring that no more than k beams are selected. 

d. Residual Update: 

Compute the updated residual: rt = y - DΩtxt 

Termination Condition: 

Repeat the iterations until a stopping criterion is met, such 

as reaching a pre-defined sparsity level or achieving a 

certain residual error threshold. 

The result is the coefficient vector x, which represents the 

selected beams that best explain the measured signal y. 
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IV. RESULT 

The purpose of this present and discuss the results 

obtained through the application of Orthogonal Matching 

Pursuit (OMP) and Kalman Filter techniques for channel 

estimation in Beamspace within the context of Millimeter-

Wave Massive MIMO (Multiple Input Multiple Output) 

Systems. The experiments were conducted to evaluate the 

performance of these algorithms in accurately estimating 

the channels in the challenging millimeter-wave frequency 

bands. 

 
Figure 2 SNR Graph 

Figure 2 is show SNR and NMSE Graph. The NMSE is a 

popular signal processing technique used for channel 

estimation and equalization in communication systems. 

SNR is a measure of the ratio of the power of the signal to 

the power of the noise in a communication channel. It is 

expressed in decibels (dB) and is a crucial parameter for 

assessing the quality of communication systems. In 

communication systems, NMSE estimation is a method 

used to estimate transmitted symbols or channel 

parameters in the presence of noise. It aims to minimize 

the mean squared error between the estimated and true 

values. Figure show As SNR increases, the signal becomes 

more distinguishable from the noise, resulting in improved 

performance of the NMSE estimator. 

 

 
Figure 3 NMSE Performance Graph 

Figure 3 is shows  NMSE (Normalized Mean Squared 

Error) performance graph is a representation of how the 

NMSE metric changes with different parameters or 

conditions in a system. NMSE is commonly used in signal 

processing and estimation tasks to quantify the accuracy of 

an estimator by comparing the mean squared error of the 

estimates with the variance of the true values. 

 
 

 

 
Figure 4 Spectral Efficiency For millimeter Wave  

A figure 4 depicting Spectral Efficiency for millimeter-

wave communication systems provide insights into how 

efficiently the available frequency spectrum is utilized to 

transmit information. Spectral Efficiency is a key 

performance metric in wireless communication, indicating 

the data rate that can be achieved per unit of bandwidth.  

The x-axis typically represents the frequency spectrum or 

the available bandwidth. In the case of millimeter-wave 

communication, this might cover the frequency range from 

30 GHz to 300 GHz or even higher. 

The y-axis represents the Spectral Efficiency, often 

measured in bits per second per Hertz (bps/Hz) or a similar 

unit. Spectral Efficiency is a measure of how efficiently 

the available bandwidth is utilized to transmit data. 

The figure consist of multiple curves or lines, each 

corresponding to different scenarios, modulation schemes, 

coding techniques, or system configurations. These curves 

depict how Spectral Efficiency changes with variations in 

these parameters. 

Modulation and Coding Schemes: 

Different points on the figure represent the Spectral 

Efficiency achieved with various modulation and coding 

schemes. Higher-order modulations and advanced coding 

techniques can contribute to increased Spectral Efficiency 

but may also be more susceptible to noise and interference. 
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Figure 5 Spectral Efficiency 64x16 mm Wave with 4 RF 

Chains for space precoding and MMSE Combining NS 

 

Figure 5 is shows 64 transmit antennas and 16 receive 

antennas. Such a massive MIMO (Multiple Input Multiple 

Output) setup is common in mmWave communication to 

exploit spatial multiplexing and enhance overall system 

performance. The presence of 4 RF (Radio Frequency) 

chains indicates that each of the 64 transmit antennas and 

16 receive antennas is connected to a dedicated RF chain. 

RF chains are responsible for the conversion of baseband 

signals to radio frequency signals and vice versa. 

Space precoding is a technique used in MIMO systems to 

optimize the transmitted signals from multiple antennas, 

taking into account the spatial characteristics of the 

communication channel. It improves the reliability and 

data rate of the communication link. 

MMSE (Minimum Mean Squared Error) combining is a 

reception technique used at the receiver side to optimize 

the combination of signals received from multiple 

antennas. MMSE combining aims to minimize the mean 

squared error between the estimated and true transmitted 

signals. 

Figure 6 is shows 56 transmit antennas and 64 receive 

antennas. Such a massive MIMO (Multiple Input Multiple 

Output) setup is common in mmWave systems to leverage 

spatial multiplexing and enhance overall system capacity. 

he presence of 6 Radio Frequency (RF) chains suggests 

that each of the 256 transmit antennas and 64 receive 

antennas is connected to a dedicated RF chain. RF chains 

are responsible for the conversion of baseband signals to 

radio frequency signals and vice versa. The number of RF 

chains influences the system's hardware complexity and 

cost. 

Space precoding is a technique used in MIMO systems to 

optimize the transmitted signals from multiple antennas, 

considering the spatial characteristics of the 

communication channel. It helps improve the reliability 

and data rate of the communication link. 

MMSE (Minimum Mean Squared Error) combining is a 

reception technique used at the receiver side to optimize 

the combination of signals received from multiple 

antennas. MMSE combining aims to minimize the mean 

squared error between the estimated and true transmitted 

signals, improving reception quality. The figure likely 

illustrates the spectral efficiency performance under 

various conditions, such as different signal-to-noise ratios 

(SNR), modulation schemes, or channel states. Curves or 

data points on the graph would showcase how the system's 

spectral efficiency varies with these conditions. 

 
Figure 6 Spectral Efficiency 256x64 mm Wave with 6 RF 

Chains for space precoding and MMSE Combining NS 

V. CONCLUSION 

The paper highlights the sparsity of millimeter-wave 

channels and introduces Subspace Pursuit as a means of 

effectively capturing dominant channel components. By 

identifying and representing the most significant 

components, Subspace Pursuit significantly reduces the 

complexity of channel estimation without sacrificing 

accuracy. 

OMP is presented as an iterative approach to selecting and 

recovering the most relevant beamspace components from 

a high-dimensional channel space. By iteratively 

narrowing the focus to the most promising channel 

components, OMP reduces dimensionality while 

preserving estimation accuracy. 

In this paper explores the integration of these techniques 

and their performance in tandem. It is demonstrated that a 

combination of Kalman filtering, Subspace Pursuit, and 

OMP offers a comprehensive approach to channel 

estimation in millimeter-wave massive MIMO systems. 

This integrated approach effectively addresses challenges 

related to dynamic environments, sparsity, and 

dimensionality. realized.  
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